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Abstract

As Artificial Intelligence (AI) technologies are increasingly transforming how we live,

work, and communicate, AI evaluation must take a human-centered approach to re-

alistically reflect real-world performance and impact. In this dissertation, I present

research that advances human-centered evaluation, and subsequently responsible de-

velopment and deployment of AI, by integrating knowledge and methods from AI

and Human-Computer Interaction (HCI). First, using explainable AI as an example,

I discuss the challenges and necessity of human (as opposed to automatic) evaluation

and present human evaluation studies that identify new issues and opportunities in

explainable AI research. Next, I bring context into the picture and present contex-

tualized studies with real users that provide a holistic and nuanced understanding of

users’ explainability needs and trust in AI. Then, I illustrate the importance of evalu-

ating human-AI interaction through studies that examine how users’ trust, reliance,

and other perceptions and behaviors are shaped by different features of AI technolo-

gies. In closing, I discuss the implications of these work, provide recommendations

for human-centered evaluation, and describe future directions for responsible AI.
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(bottom) to get a list of birds that best match the input. Users also

share optional location and season data. The resulting bird list comes

with example photos and sounds. . . . . . . . . . . . . . . . . . . . . 63

3.2 Identification examples and AI explanations shown to partic-

ipants. We showed three real examples of Merlin Photo ID identifi-

cations, paired with mock-up explanations we designed for each. Each

XAI approach was introduced with the following description. Heatmap:

The AI model considers the red highlighted regions as evidence for

[output, i.e., Evening Grosbeak. House Wren, Ruby-throated Hum-

mingbird]. Example: The AI model considers the input photo most

similar to the below photos of [output] the AI model has seen. Con-

cept : The AI model considers the presence of the following concepts as

positive/negative evidence for [output]. Prototype: The AI model con-

siders the boxed regions of the input photo similar to parts of [output]

photos the AI model has seen. See Sec. 3.4.2 for details. . . . . . . . 70

4.1 Trust model of Mayer et al. [261]. Based on this model, we sep-

arate trust from trustworthiness perceptions that precede it, and two

trust-related behaviors that proceed from it: (1) AI adoption, which

corresponds to risk taking in relationship in the model, and (2) AI

output acceptance, which corresponds to outcomes evaluation in the

model. In this work, we describe both general trustworthiness percep-

tions and trust attitudes, and instance-specific trust-related behaviors.

See Section 4.2.1 for further discussion. This figure is replicated from

the work of Mayer et al. [261]. . . . . . . . . . . . . . . . . . . . . . 96
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4.2 Our study application Merlin [368]. Merlin is a popular AI-based

bird identification mobile phone app. Users upload photos on the Photo

ID feature (left) or audio recordings on the Sound ID feature (right),

with optional location and season data, and get a list of bird(s) that

best match the input. See Section 4.3.1 for more details about the app. 102

5.1 Screenshot of the information-seeking task (shown in the Con-

trol, Uncertain1st, and UncertainGeneral conditions). Addi-

tional screenshots, including the variant shown in theNo-AI condition,

can be found in the supp. mat. . . . . . . . . . . . . . . . . . . . . . 129

5.2 Exploratory analysis of over- and underreliance (Sec-

tion 5.5.1). We analyze Correct (%) separately for questions

the system answered correctly vs. incorrectly. We show the model-

estimated means and standard errors for each condition (Figure 5.2a)

and for not uncertain vs. uncertain responses in the conditions with

uncertainty (Figure 5.2b). . . . . . . . . . . . . . . . . . . . . . . . . 148

6.1 Overview of our studies. In Study 1, participants engaged in multi-

turn interactions with ChatGPT to arrive at correct answers to objec-

tive questions. Based on a thematic analysis of think-aloud and be-

havioral data, we identified explanations, inconsistencies, and sources

as three features of LLM responses likely to influence user reliance.

These three features were then investigated in a controlled experiment

(Study 2), with features operationalized as indicated in the schematic

illustration. Similar to Study 1, participants solved question-answering

tasks. However, this time, they had access to one LLM response whose

features we experimentally manipulated. . . . . . . . . . . . . . . . . 166
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6.2 Screenshots of Study 2’s experimental task. Here the LLM re-

sponse provides an incorrect answer, includes sources, and includes an

explanation (with inconsistencies). See Figure 6.3 for responses with a

correct answer for the same task question. . . . . . . . . . . . . . . . 174

6.3 Types of LLM responses used in Study 2. We vary three variables

in the LLM responses: accuracy of the LLM’s answer to the question

(correct/incorrect), presence of an explanation (absent/present), and

presence of clickable sources (absent/present). In total there are 8

types of responses. Here we show 4 types of responses with a correct

answer to the question: “Do more than two thirds of South Amer-

ica’s population live in Brazil?” See Figure 6.2 for a response with an

incorrect answer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4 Summary of participants’ accuracy in Study 2. We plot the

raw data means and 95% confidence intervals for participants’ accu-

racy when provided with different types of LLM responses. When the

LLM’s answer is correct, participants’ accuracy is highest when the

LLM response includes an explanation and sources (Figure 6.4a left).

When the LLM’s answer is incorrect, participants’ accuracy is highest

when the LLM response includes sources but not an explanation (Fig-

ure 6.4a right). When the LLM response includes an explanation for an

incorrect answer, participants’ accuracy is higher when the explanation

is inconsistent (Figure 6.4b). . . . . . . . . . . . . . . . . . . . . . . . 185
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6.5 Study 2 results on inconsistencies. We plot the raw data means

and 95% confidence intervals. Brackets indicate statistically significant

differences between three types of incorrect LLM responses: No expla-

nation, Consistent explanation, and Inconsistent explanation. Signifi-

cance is marked as ∗ (p < .05), ∗∗ (p < .01), and ∗∗∗ (p < .001). See

Section 6.4.3 for details. . . . . . . . . . . . . . . . . . . . . . . . . . 188
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Chapter 1

Introduction

Artificial Intelligence (AI) technologies are advancing at an incredible pace and trans-

forming how we live, work, and communicate [10, 132, 238, 265, 281, 315, 427]. At

the same time, AI technologies frequently and unexpectedly fail for various reasons.

While technology failure is not new, the enormous complexity and unpredictabil-

ity of AI technologies make it extremely difficult for users, and even developers, to

know when and why AI technologies fail and how much to trust them [5, 105, 150,

154, 234, 257, 287, 345]. Nevertheless, AI technologies are increasingly deployed in

the real world for their impressive capabilities, and this trend is widely predicted to

grow [179, 343, 446]. We are in a pivotal moment where we must ensure AI technolo-

gies are developed and deployed responsibly in a way that supports users to have safe

and successful interactions with these powerful, yet imperfect technologies.

At the heart of responsible AI is human-centered evaluation that foregrounds

human needs and contexts in evaluating the performance and impact of AI [42, 49,

70, 227, 364]. As AI technologies are ultimately developed for human interaction and

can have a profound impact on individuals and society at large, AI evaluation must

take a human-centered approach to realistically reflect real-world performance and

impact, and subsequently to reduce unexpected failures and negative impact of AI.
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Current AI evaluation, however, is predominantly technology-centered. The most

widely utilized methods are standardized benchmarks that automatically evaluate an

AI model’s performance on some task (e.g., question answering). Other technology-

centered methods include non-contextualized human ratings (e.g., having humans rate

AI outputs on non-contextualized criteria such as fluency and coherence) and simu-

lated evaluation (e.g., using AI models to simulate human judgments). Technology-

centered evaluation methods are commonly used because they are relatively cost- and

time-efficient, which make them scalable. However, they are less realistic due to their

constrained and simple nature, and they have been criticized for their lack of validity

and inability to capture nuanced meaning.

On the other end, there are human-centered evaluation methods, such as contextu-

alized human ratings (e.g., describing the context of AI use and having humans rate AI

outputs on context-specific criteria) and application-grounded studies with the high-

est context and human requirement realism [100, 227]. Human-centered evaluation

methods tend to be more realistic because they are flexible and nuanced, allowing us to

explore deeper questions like “how” and “why.” Thus, while they may be less scalable,

when done well, they can better assess real-world performance and impact of AI tech-

nologies and guide us on where and in what direction to make technical innovation.

The goal of this thesis is to push AI evaluation to be more human-centered by

both demonstrating the value of human-centered evaluation and making it more ap-

proachable to researchers and practitioners who may be less familiar with it.

To begin, in Chapter 2, I discuss the challenges and necessity of human (as opposed

to automatic) evaluation using explainable AI as a case study. While explainable AI

methods are developed to support human understanding and decision-making, they

are typically evaluated with automatic metrics due to challenges associated with hu-

man evaluation. In this chapter, I demonstrate how we can address these challenges

and present large-scale human evaluations [190, 319] that reveal critical issues in the
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state-of-the-art methods, such as their tendency to increase users’ overreliance on in-

correct AI outputs. I close the chapter with a discussion on how to responsibly develop

and deploy explainable AI methods to minimize their unintended negative effects.

Next, I present contextualized studies with real AI users that contribute a holistic

and nuanced understanding of users’ explainability needs and trust in AI. These

studies were done with users of a real-world AI application (i.e., Merlin Bird ID [368])

with varying levels of AI and domain expertise. Chapter 3 provides insights on

what explainability needs users have and how they perceive popular explainable AI

approaches, highlighting new issues and opportunities in explainable AI research [192].

Chapter 4 elucidates when and how users trust (or not trust) AI and identifies human,

AI, and context-related factors that can influence user trust in AI [191]. Overall, these

contextualized studies offer guidance on what to evaluate and where to make technical

innovation for effective and responsible AI development.

Then, I illustrate how studies of human-AI interaction can help foster appropri-

ate user trust and reliance on AI, another key aspect of responsible AI. Chapter 5

presents a large-scale, pre-registered experiment that examines how user trust and re-

liance are influenced by natural language uncertainty expressions from large language

models (LLMs), one of the most influential AI technologies in the current era [193].

Chapter 6 presents two studies: first, a think-aloud study that explores what features

of LLM responses shape users’ reliance, and second, a large-scale, pre-registered ex-

periment that evaluates the effects of the identified features — explanations, sources,

and inconsistencies in LLM responses — on users’ reliance [194]. These studies of

user perceptions and interactions with LLMs contribute actionable insights on how

to adjust LLM response features to encourage appropriate user trust and reliance.

Finally, in Chapter 7, I discuss the implications and the lessons learned from the

aforementioned work and describe future directions for advancing responsible AI.
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Chapter 2

Evaluating the usefulness of AI

explanations

As AI technology is increasingly applied to high-impact, high-risk domains, there

have been a number of new methods aimed at making AI models more understand-

able to humans. However, there is a lack of systematic evaluation of proposed AI

explanation methods, especially regarding their usefulness to human users. In this

chapter, we introduce HIVE (Human Interpretability of Visual Explanations), a novel

human evaluation framework that assesses the utility of AI explanations to human

users in AI-assisted decision making scenarios, and enables falsifiable hypothesis test-

ing, cross-method comparison, and human-centered evaluation of visual AI expla-

nation methods. To the best of our knowledge, this is the first work of its kind.

Using HIVE, we conduct IRB-approved human studies and evaluate a diverse range

of methods: GradCAM, BagNet, ProtoPNet, and ProtoTree. Our results suggest

that AI explanations engender human trust, even for incorrect predictions, yet are

not distinct enough for users to distinguish between correct and incorrect predic-

tions. We also demonstrate how HIVE can be extended to study other aspects of AI

explanations (e.g., explanation complexity). In a follow-up study on concept-based
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explanations, we find that existing AI explanations are too complex, highlighting

the need to consider human capabilities and preferences in developing new methods.

We open-source HIVE to enable future studies and encourage more human-centered

approaches to AI interpretability (explainability) research. HIVE can be found at

https://princetonvisualai.github.io/HIVE.

This chapter contains materials published in the ECCV 2022 paper, HIVE: Eval-

uating the Human Interpretability of Visual Explanations [190], in collaboration with

Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, and Olga Russakovsky, and

the CVPR 2023 paper, Overlooked Factors in Concept-based Explanations: Dataset

Choice, Concept Learnability, and Human Capability [319], in collaboration with

Vikram V. Ramaswamy, Ruth Fong, and Olga Russakovsky.

2.1 Introduction

With the growing adoption of AI in high-impact, high-risk domains, there have been

a surge of efforts aimed at making AI models more interpretable. Motivations for

interpretability include allowing human users to trace through a model’s reasoning

process (accountability, transparency), verify that the model is basing its predictions

on the right reasons (fairness, ethics), and assess their level of confidence in the

model (trustworthiness). The interpretability research field tackles these questions

and is comprised of diverse works, including those that provide explanations of the

behavior and inner workings of complex AI models [29, 30, 124, 125, 308, 339, 350,

428, 441], those that design inherently interpretable models [52, 64, 65, 72, 99, 103,

200, 285, 316], and those that seek to understand what is easy and difficult for these

models [7, 397, 433] to make their behavior more interpretable.

Despite much methods development, there is a relative lack of standardized eval-

uation methods for proposed techniques. Existing evaluation methods for computer
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Figure 2.1: Different forms of explanation. (Top left) Heatmap explanations
(GradCAM [339], BagNet [52]) highlight decision-relevant image regions. (Bottom
left) Prototype-based explanations (ProtoPNet [72], ProtoTree [285]) match image
regions to prototypical parts learned during training. This schematic is much simpler
than actual explanations. (Right) Actual ProtoPNet explanation example from the
original paper. While existing evaluation methods typically apply to only one expla-
nation form, HIVE evaluates and compares diverse interpretability methods.

vision interpretability methods are focused on feature attribution heatmaps that high-

light “important” image regions for a model’s prediction. Since we lack ground-truth

knowledge about which regions are actually responsible for the prediction, differ-

ent evaluation metrics use different proxy tasks for verifying these important regions

(e.g., measuring the impact of deleting regions or the overlap between ground-truth

objects and highlighted regions) [123, 157, 308, 311, 421, 432]. However, these au-

tomatic evaluation metrics are disconnected from downstream use cases of expla-

nations; they don’t capture how useful end-users find heatmaps in their decision

making. Further, these metrics don’t apply to other forms of explanations, such as

prototype-based explanations produced by some of the recent interpretable-by-design

models [72, 99, 285].

In part due to these challenges, the interpretability of a proposed method is of-

ten argued through a few exemplar explanations that highlight how a method is

more interpretable than a baseline model. However, recent works suggest that some

methods are not as interpretable as originally imagined and may engender over-trust

29



in automated systems [5, 105, 150, 154, 234, 257, 287, 345]. They caution against

an over-reliance on intuition-based justifications and raise awareness for the need of

falsifiable hypotheses [219] and proper evaluation in interpretability research.

Our contributions. As more diverse interpretability methods are being proposed, it

is more important than ever to have a standardized and rigorous evaluation framework

that allows for falsifiable hypothesis testing, cross-method comparison, and human-

centered evaluation. To this end, we develop HIVE (Human Interpretability of Visual

Explanations). HIVE evaluates diverse visual interpretability methods by evaluating

all methods on a common task. We carefully design the tasks to reduce the effect

of confirmation bias and human prior knowledge in interpretability evaluation, and

assess the utility of explanations in AI-assisted decision making scenarios. HIVE also

examines how well interpretable-by-design models’ reasoning process aligns with that

of humans, and how human users tradeoff interpretability and accuracy.

To demonstrate the extensibility and applicability of HIVE, we conduct IRB-

approved human studies with nearly 1000 participants and evaluate four existing

methods that represent different streams of interpretability work (e.g., post-hoc ex-

planations, interpretable-by-design models, heatmaps, and prototype-based explana-

tions): GradCAM [339], BagNet [52], ProtoPNet [72], ProtoTree [285]. To the best

of our knowledge, we are the first to compare interpretability methods with differ-

ent explanation forms (see Figure 2.1) and the first to conduct human studies of the

evaluated interpretable-by-design models [52, 72, 285].

We obtain a number of insights through our studies:

• When provided explanations, participants tend to believe that the model pre-

dictions are correct, revealing an issue of confirmation bias. For example, our

participants found 60% of the explanations for incorrect model predictions con-

vincing. Prior work has made similar observations for non-visual interpretability
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methods [312]; we substantiate them for visual explanations and demonstrate a

need for rigorous evaluation of proposed methods.

• When given multiple model predictions and explanations, participants struggle

to distinguish between correct and incorrect predictions based on the expla-

nations (e.g., achieving only 40% accuracy on a multiple-choice task with four

options). This result suggests that interpretability methods need to be improved

to be reliably useful for AI-assisted decision making.

• There exists a gap between the similarity judgments of humans and prototype-

based models [72, 285] which can hurt the quality of their interpretability.

• Participants prefer to use a model with explanations over a baseline model

without explanations. To switch their preference, they require the baseline

model to have +6.2% to +10.9% higher accuracy.

As interpretability is fundamentally a human-centric concept, it needs to be eval-

uated in a human-centric way. We hope our work helps pave the way towards human

evaluation becoming commonplace, by presenting and analyzing a human study de-

sign, demonstrating its effectiveness and informativeness for interpretability evalua-

tion, and open-sourcing the code to enable future work.

2.2 Related work

2.2.1 Interpretability landscape in computer vision

Interpretability research can be described along several axes: first, whether a method

is post-hoc or interpretable-by-design; second, whether it is global or local; and third,

the form of an explanation (see [1, 27, 56, 74, 122, 135, 143, 323] for surveys). Post-hoc

explanations focus on explaining predictions made by already-trained models, whereas
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interpretable-by-design (IBD) models are intentionally designed to possess a more ex-

plicitly interpretable decision-making process [52, 64, 65, 72, 99, 103, 200, 285, 316].

Furthermore, explanations can either be local explanations of a single input-output

example or global explanations of a network (or its component parts). Local, post-hoc

methods include heatmap [125, 308, 339, 347, 350, 428, 441], counterfactual explana-

tion [138, 383, 398], approximation [320], and sample importance [199, 422] methods.

In contrast, global, post-hoc methods aim to understand global properties of CNNs,

often by treating them as an object of scientific study [29, 30, 124, 189] or by gener-

ating class-level explanations [318, 442]. Because we focus on evaluating the utility

of explanations in AI-assisted decision making, we do not evaluate global, post-hoc

methods. IBD models can provide local and/or global explanations, depending on

the model type. Lastly, explanations can take a variety of forms: two more popu-

lar ones we study are heatmaps highlighting important image regions and prototypes

(i.e., image patches) from the training set that form interpretable decisions. In our

work, we investigate four popular methods that span these types of interpretability

work: GradCAM [339] (post-hoc, heatmap), BagNet [52] (IBD, heatmap), ProtoP-

Net [72] (IBD, prototypes), and ProtoTree [285] (IBD, prototypes). See Figure 2.1

for examples of their explanations.

2.2.2 Evaluating heatmaps

Heatmap methods are arguably the most-studied class of interpretability work. Sev-

eral automatic evaluation metrics have been proposed [23, 123, 157, 308, 311, 421,

432], however, there is a lack of consensus on how to evaluate these methods. Further,

the authors of [5, 6] and BAM [421] highlight how several methods fail basic “sanity

checks” and call for more comprehensive metrics. Complementing these works, we

use HIVE to study how useful heatmaps are to human users in AI-assisted decision
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making scenarios and demonstrate insights that cannot be gained from automatic

evaluation metrics.

2.2.3 Evaluating interpretable-by-design models

In contrast, there has been relatively little work on assessing interpretable-by-design

models. Quantitative evaluations of these methods typically focus on demonstrat-

ing their competitive performance with a baseline CNN, while the quality of their

interpretability is often demonstrated through qualitative examples. Recently, a few

works revisited several methods’ interpretability claims. Hoffmann et al. [154] high-

light that prototype similarity of ProtoPNet [72] does not correspond to semantic

similarity and that this disconnect can be exploited. Margeloiu et al. [257] analyze

concept bottleneck models [200] and demonstrate that learned concepts fail to cor-

respond to real-world, semantic concepts. In this work, we conduct the first human

study of three popular interpretable-by-design models [52, 72, 285] and quantify prior

work’s [154, 285] anecdotal observation on the misalignment between prototype-based

models [72, 285] and humans’ similarity judgment.

2.2.4 Evaluating explanations with human studies

Outside the computer vision field, human studies are commonly conducted for mod-

els trained on tabular datasets [210, 211, 216, 312, 437]; however, these do not scale

to the complexity of modern vision models. Early human studies for visual expla-

nations have been limited in scope: They typically ask participants which explana-

tion they find more reasonable or which model they find more trustworthy based

on explanations [169, 339]. Recently, more diverse human studies have been con-

ducted [40, 47, 117, 287, 345, 347, 449].

Closest to our work are [117, 287, 345]. Shen and Huang [345] ask users to select

incorrectly predicted labels with or without showing explanations; Nguyen et al. [287]
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ask users to decide whether model predictions are correct based on explanations; Fel et

al. [117] ask users to predict model outputs in a concurrent work. Regarding [287, 345],

our distinction task also investigates how useful explanations are in distinguishing

correct and incorrect predictions. However, different from these works, we ask users

to select the correct prediction out of multiple predictions to reduce the effect of

confirmation bias and don’t show class labels to prevent users from relying their prior

knowledge. Regarding [117], we also ask users to predict model outputs, but mainly

as a supplement to our distinction task. Further, we ask users to identify the model

output out of multiple predictions based on the explanations, whereas [117] first trains

users to be a meta-predictor of the model by showing example model predictions

and explanations, and then at test time asks users to predict the model output for

a given image without showing any explanation. Most importantly, different from

[117, 287, 345], we evaluate interpretability methods beyond heatmaps and conduct

cross-method comparison. Our work is similar in spirit to work by Zhou et al. [445]

on evaluating generative models with human perception. For general guidance on

running human studies in computer vision, refer to work by Bylinskii et al. [63].

2.3 HIVE design principles

In this work, we focus on AI-assisted decision making scenarios, in particular those

that involve an image classification model. For a given input image, a user is shown

a model’s prediction along with an associated explanation, and is asked to make a

decision about whether the model’s prediction is correct or more generally about

whether to use the model. In such a scenario, explanations are provided with several

goals in mind: help the user identify if the model is making an error, arrive at a more

accurate prediction, understand the model’s reasoning process, decide how much to

trust the model, etc.
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Figure 2.2: Study user interfaces (UIs). We show simplified UIs for evaluating
ProtoPNet [72] on the agreement task (top) and GradCAM [339] on the distinction
task (bottom). Full UI snapshots are in the supp. mat. See Section 2.3 for description
of the tasks.

To study whether and to what extent different visual interpretability methods are

useful for AI-assisted decision making, we develop a novel human evaluation frame-

work named HIVE (Human Interpretability of Visual Explanations). In particular,

we design HIVE to allow for falsifiable hypothesis testing regarding the usefulness

of explanations for identifying model errors, cross-method comparison between dif-

ferent explanation approaches, and human-centered evaluation for understanding the

practical effectiveness of interpretability.

2.3.1 Falsifiable hypothesis testing

We join a growing body of work that cautions against intuition-based justification

and subjective self-reported ratings in interpretability evaluation [5, 206, 219, 332]

and calls for objective assessment with behavior indicators [212, 312, 425, 437]. To

this end, we design two evaluation tasks, the agreement and distinction tasks, that

enable falsifiable hypothesis testing about the evaluated interpretability method.
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In the agreement task, we present participants with one prediction-explanation

pair at a time and ask how confident they are in the model’s prediction based on

the explanation. We evaluate methods on this task in part because it is closer to

existing interpretability evaluation schemes that consider a model’s top-1 prediction

and its explanation [339], and also because it allows us to quantify the degree to

which participants believe in model predictions based on explanations.

The agreement task measures the amount of confirmation bias that arises for a

given interpretability method. However, it doesn’t measure the utility of explanations

in distinguishing correct and incorrect predictions, a crucial functionality of explana-

tions in AI-assisted decision making. Hence, we design and use the distinction task

as our main evaluation task. Here we simultaneously show four predictions and their

associated explanations for a given input image and ask users to identify the correct

prediction based on the provided explanations. The distinction task also mitigates the

effect of confirmation bias in interpretability evaluation, as participants now have to

reason about multiple explanations at once. See Figure 2.3 for the evaluation task UIs.

One concern with this setup is ensuring that participants use the provided expla-

nations rather than their knowledge to complete the task. We take two measures to

remove the effect of human prior knowledge in our evaluations. First, we evaluate all

interpretability methods in the context of fine-grained bird species classification [391],

which is a challenging task for non-bird experts. Second, as a more general measure,

we omit the semantic class labels of the predictions. This measure is particularly

important when evaluating interpretability methods in easier contexts, e.g., coarse-

grained object classification with ImageNet [324], because the task becomes too easy

otherwise (i.e., participants can select the correct prediction based on the class labels

instead of using the explanations). Note that ground-truth class labels are also omit-

ted to simulate a realistic decision making scenario where users do not have access to

the ground truth.
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2.3.2 Cross-method comparison

Existing evaluation methods typically apply to only one explanation form (e.g.,

heatmaps are compared against each other). In contrast, HIVE enables cross-method

comparison between different explanation forms by focusing on downstream uses of

explanations and evaluating all methods on a common task.

However, there remains a number of practical roadblocks. First, different methods

may have been developed for different scenarios (e.g., fine-grained vs. coarse-grained

classification), requiring us to carefully analyze the effect of the particular setting

during evaluation. Second, different methods may be more or less digestible to the

users. While this is an inherent part of what we are trying to evaluate, we also

want to ensure that the evaluation task is doable by study participants with limited

machine learning background, given most human studies in the field are run through

Amazon Mechanical Turk. Hence, we actualize a specific evaluation setup for each

interpretability method by creating an individual evaluation UI that respects the

method’s characteristics (e.g., its explanation form, dataset used for model training).

We briefly describe the four methods we evaluate in this work (see Figure 2.1 for

example explanations) and their evaluation setups. When making any adaptations,

we tried to present each method in as favorable of a way as possible. More details

are in the supp. mat.

GradCAM [339]. GradCAM is a post-hoc method that produces a heatmap that

highlights important regions in an input image that contribute to a model’s prediction.

We evaluate GradCAM on ImageNet [324], which it was originally developed for, as

well as on CUB [391], for which we train a standard CNN model to use as the

underlying model for generating GradCAM heatmaps.

BagNet [52]. In contrast, BagNet is an interpretable-by-design model that collects

evidence for a class from small regions of an image. For each class, BagNet creates

a heatmap where higher values (i.e., darker red in our visualizations) imply stronger
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evidence for the class. BagNet then sums the values in each heatmap and predicts

the class with the highest sum. We evaluate BagNet on ImageNet, for which it was

originally designed, as well as on CUB, for which we train a new BagNet model using

the authors’ code.

ProtoPNet [72]. The next two methods reason with prototypes, which are small

image patches from the training set that these models deem as representative for a

certain class. At test time, ProtoPNet compares a given image to the set of prototypes

it learned during training and finds regions in the image that are the most similar

to each prototype. It computes a similarity score between each prototype-region

pair, then predicts the class with the highest weighted sum of the similarity scores.

The ProtoPNet model for CUB learns 10 prototypes for each of the 200 bird species

(2,000 total) and produces one of the most complex explanations. Its explanation for

a single prediction consists of 10 prototypes and their source images, heatmaps that

convey the similarity between matched image regions and prototypes, continuous and

unnormalized similarity scores, and weights multiplied to the scores (see Figure 2.1

right). In our evaluation, we abstract away most technical details based on our pilot

studies, and focus on showing the most crucial component of ProtoPNet’s reasoning

process: the prototype-image region matches. We also ask participants to rate the

similarity of each match (see Figure 2.3 top) to assess how well the model’s similarity

judgment aligns with that of humans. See the supp. mat. for the task and explanation

modification details.

ProtoTree [285]. Finally, the ProtoTree model learns a tree structure along with the

prototypes. Each node in the tree contains a prototype from a training image. At each

node, the model compares a given test image to the node’s prototype and produces

a similarity score. If the score is above some threshold, the model judges that the

prototype is present in the image and absent if not. The model then proceeds to the

next node and repeats this process until it reaches a leaf node, which corresponds to
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a class. The ProtoTree model for CUB trained by the authors has 511 decision nodes

and up to 10 decision steps, and our pilot studies revealed that is too overwhelming

for participants. Thus in our evaluation, we significantly simplify the decision process.

Participants are shown the model’s decisions until the penultimate decision node, and

then are asked to make decisions for only the final two nodes of the tree by judging

whether the prototype in each node is present or absent in the image. This leads

the participants to select one of the four (22) classes as the final prediction. One

additional challenge is that participants may not be familiar with decision trees and

thus may have trouble following the explanation. To help understanding, we introduce

a simple decision tree model with two levels, walk through an example, and present

two warm up exercises so that participants can get familiar with decision trees before

encountering ProtoTree. See the supp. mat. for more information.

2.3.3 Human-centered evaluation

HIVE complements existing algorithmic evaluation methods by bringing humans back

into the picture and taking a human-centered approach to interpretability evaluation.

The design of HIVE, particularly the inclusion/exclusion of class labels in Sec. 2.3.1

and careful actualization of the evaluation setup in Sec. 2.3.2, is focused on making

this evaluation tractable for the participants and as fair as possible with respect to dif-

ferent interpretability methods. We also went through multiple iterations of UI design

to present visual explanations in digestible bits so as to not overwhelm participants

with their complexity. Despite the challenges, there is a very important payoff from

human studies. We are able to evaluate different interpretability methods through

participants’ 1) ability to distinguish between correct and incorrect predictions based

on the provided explanations, simulating a more realistic AI-assisted decision-making

setting, and 2) level of alignment with the model’s intermediate reasoning process in
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the case of prototype-based, interpretable-by-design models. We also gain a number

of valuable insights that can only be obtained through human studies.

2.3.4 Generalizability & Scalability

In closing we discuss two common concerns about human studies: generalizability

and scalability. We have shown HIVE’s generalizability by using it to evaluate a va-

riety of methods (post-hoc explanations, interpretable-by-design models, heatmaps,

prototype-based explanations) in two different settings (coarse-grained object recog-

nition with ImageNet, fine-grained bird recognition with CUB). Further, a recent

work by Ramaswamy et al. [319] uses HIVE to set up new human studies, for evalu-

ating example-based explanations and finding the ideal complexity of concept-based

explanations, demonstrating that HIVE can be easily generalized to new methods and

tasks. Regarding scalability, human study costs are not exorbitant contrary to popular

belief and can be budgeted for like we budget for compute. For example, our Grad-

CAM distinction study cost $70 with 50 participants compensated at $12/hr. The real

obstacles are typically the time, effort, and expertise required for study design and

UI development; with HIVE open-sourced, these costs are substantially mitigated.

2.4 HIVE study design

In this section, we describe our IRB-approved study design. See the supp. mat. and

https://princetonvisualai.github.io/HIVE for UI snapshots and code.

Introduction. For each participant, we first introduce the study and receive their in-

formed consent. We also request optional demographic data regarding gender identity,

race and ethnicity, and ask about the participant’s experience with machine learn-

ing; however, no personally identifiable information was collected. Next we explain

the evaluated interpretability method in simple terms by avoiding technical jargon
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(i.e., replacing terms like “image” and “training set” to “photo” and “previously-seen

photos”). We then show a preview of the evaluation task and provide example expla-

nations for one correct and one incorrect prediction made by the model to give the

participant appropriate references. The participant can access the method description

at any time during the task.

Objective evaluation tasks. Next we evaluate the interpretability method on a

behavioral task (distinction or agreement) introduced in Section 2.3.1 and Figure 2.3.

Detailed task descriptions are available in the supp. mat.

Subjective evaluation questions. While the core of HIVE is in the objective

evaluation tasks, we also ask subjective evaluation questions to make the most out

of the human studies. Specifically, we ask the participant to self-rate their level

of understanding of the evaluated method before and after completing the task, to

investigate if the participant’s self-rated level of understanding undergoes any changes

during the task. After the task completion, we disclose the participant’s performance

on the task and ask the question one last time.

Interpretability-accuracy tradeoff questions. While interpretability methods

offer useful insights into a model’s decision, some explanations come at the cost

of lower model accuracy. Hence in the final part of the study, we investigate the

interpretability-accuracy tradeoff participants are willing to make when comparing

an interpretable method against a baseline model that doesn’t come with any ex-

planation. In high-risk scenarios a user may prefer to maximize model performance

over interpretability. However, another user may prefer to prioritize interpretability

in such settings so that there would be mechanisms for examining the model’s pre-

dictions. To gain insight into the tradeoff users are willing to make, we present three

scenarios: low-risk (e.g., bird species recognition for scientific or educational pur-

poses), medium-risk (e.g., object recognition for automatic grocery checkout), and

high-risk (e.g., scene understanding for autonomous driving). For each scenario, we
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then ask the participant to input the minimum accuracy of the baseline model that

would convince them to use it over the model with explanations and also describe the

reason for their choices.

2.5 HIVE study results

2.5.1 Experimental details

Datasets & Models. We evaluate all interpretability methods on classification tasks

and use images from the CUB [391] test set and the ImageNet [324] validation set to

generate model predictions and explanations. On CUB, we evaluate all four methods:

GradCAM [339], BagNet [52], ProtoPNet [72], ProtoTree [285]. On ImageNet, we

evaluate GradCAM and BagNet. See the supp. mat. for details.

Human studies. For each study, i.e., an evaluation of one interpretability method

on one task (distinction or agreement), we recruited 50 participants through Amazon

Mechanical Turk (AMT). In total, we conducted 19 studies with 950 participants;

see the supp. mat. for the full list. The self-reported machine learning experience of

the participants was 2.5 ± 1.0, between “2: have heard about...” and “3: know the

basics...” The mean study duration was 6.9 minutes for GradCAM, 6.6 for BagNet,

13.6 for ProtoPNet, and 10.4 for ProtoTree. Participants were compensated based

on the state-level minimum wage of $12/hr.

Statistical analysis. For each study, we report the mean task accuracy and standard

deviation of the participants’ performance which captures the variability between

individual participants’ performance. We also compare the study result to random

chance and compute the p-value from a 1-sample t-test.1 When comparing results

1We compare our results to chance performance instead of a baseline without explanations because
we omit semantic class labels to remove the effect of human prior knowledge (see Section 2.3.1); so
such a baseline would contain no relevant information.
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Table 2.1: Agreement task results. For each study, we show mean accuracy,
standard deviation of the participants’ performance, and mean confidence rating in
parentheses. Italics denotes methods with accuracy not statistically significantly
different from 50% random chance (p > 0.05); bold denotes the highest performing
method in each group. In all studies, participants leaned towards believing that model
predictions are correct when provided explanations, regardless of if they are actually
correct. For example, for GradCAM on CUB, participants thought 72.4% of correct
predictions were correct and 100−32.8 = 67.2% of incorrect predictions were correct.
These results reveal an issue of confirmation bias. See Section 2.5.2 for a discussion.

CUB GradCAM [339] BagNet [52] ProtoPNet [72] ProtoTree [285]
Correct 72.4% ± 21.5 (2.9) 75.6% ± 23.4 (3.0) 73.2% ± 24.9 (3.0) 66.0% ± 33.8 (2.8)
Incorrect 32.8% ± 24.3 (2.8) 42.4% ± 28.7 (2.7) 46.4% ± 35.9 (2.4) 37.2% ± 34.4 (2.7)
ImageNet GradCAM [339] BagNet [52] - -
Correct 70.8% ± 26.6 (2.9) 66.0% ± 27.2 (2.8) - -
Incorrect 44.8% ± 31.6 (2.7) 35.6% ± 26.9 (2.7) - -

between two groups, we compute the p-value from a 2-sample t-test. Results are

deemed statistically significant under p < 0.05 conditions.

2.5.2 The issue of confirmation bias

Let us first examine how the four methods perform on the agreement task, where

we present participants with one prediction-explanation pair at a time and ask how

confident they are in the model’s prediction. Results are summarized in Table 2.1. On

CUB, participants found 72.4% of correct predictions convincing for GradCAM, 75.6%

for BagNet, 73.2% for ProtoPNet, and 66.0% ProtoTree. However, they also thought

67.2% of incorrect predictions were correct for GradCAM, 57.6% for BagNet, 53.6%

for ProtoPNet, and 62.8% for ProtoTree. Similarly on ImageNet, participants found

70.8% of correct predictions convincing for GradCAM and 66.0% for BagNet, yet

also believed in 55.2% and 64.4% of incorrect predictions, respectively. These results

reveal an issue of confirmation bias : When given explanations, participants tend to

believe model predictions are correct, even if they are wrong. Still, the confidence

ratings are overall higher for correct predictions than incorrect predictions, suggesting
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there is some difference between their explanations. More results and discussion are

in the supp. mat.

2.5.3 Objective assessment of interpretability

Next we discuss findings from our main evaluation task, the distinction task, where

we ask participants to select the correct prediction out of four options based on the

provided explanations. Results are summarized in Table 2.2.

Participants perform better on correctly predicted samples. On correctly

predicted samples from CUB, the mean task accuracies are 71.2% on GradCAM,

45.6% on BagNet, 54.5% on ProtoPNet and 33.8% on ProtoTree, all above the 25%

chance baseline. That is, participants can identify which of the four explanations

correspond to the ground-truth class correctly predicted by the model. On incorrect

predictions, however, the accuracies drop from 71.2% to 26.4% for GradCAM and

from 45.6% to 32.0% for BagNet, and we observe a similar trend in the ImageNet

studies. These results suggest that explanations for correct predictions may be more

coherent and convincing than those for incorrect predictions. Even so, all accuracies

are far from 100%, indicating that the evaluated methods are not yet reliably useful

for AI-assisted decision making.

Participants struggle to identify the model’s prediction. For GradCAM and

BagNet, we ask participants to select the class they think the model predicts (output

prediction) in addition to the class they think is correct (distinction). For BagNet,

this is a straightforward task where participants just need to identify the most acti-

vated (most red, least blue) heatmap among the four options, as BagNet by design

predicts the class with the most activated heatmap. However, accuracy is not very

high, only marginally above the distinction task accuracy. This result suggests that

BagNet heatmaps for the top-4 (or top-3 plus ground-truth) classes look similar to

the human eye, and may not be suitable for assisting humans with tasks that involve
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Table 2.2: Distinction and output prediction task results. For each study, we
report the mean accuracy and standard deviation of the participants’ performance.
Italics denotes methods that do not statistically significantly outperform 25% random
chance (p > 0.05); bold denotes the highest performing method in each group. In
the top half, we show the results of all four methods on CUB. In the bottom half,
we show GradCAM and BagNet results on ImageNet, without vs. with ground-truth
class labels. Overall, participants struggle to identify the correct prediction or the
model output based on explanations. See Section 2.5.3 for a discussion.

CUB GradCAM [339] BagNet [52] ProtoPNet [72] ProtoTree [285]

Distinction
Correct 71.2% ± 33.3 45.6% ± 28.0 54.5% ± 30.3 33.8% ± 15.9
Incorrect 26.4% ± 19.8 32.0% ± 20.8 - -

Output prediction
Correct 69.2% ± 32.3 50.4% ± 32.8 - -
Incorrect 53.6% ± 27.0 30.0% ± 24.1 - -

ImageNet GradCAM [339] with labels BagNet [52] with labels

Distinction
Correct 51.2% ± 24.7 49.2% ± 30.8 38.4% ± 28.0 34.8% ± 27.7
Incorrect 30.0% ± 22.4 27.2% ± 20.3 26.0% ± 18.4 27.2% ± 18.7

Output prediction
Correct 48.0% ± 28.3 48.0% ± 35.6 46.8% ± 29.0 42.8% ± 27.4
Incorrect 35.6% ± 24.1 33.2% ± 25.2 34.0% ± 24.1 32.8% ± 25.5

distinguishing one class from another. For GradCAM, participants also struggle on

this task but to a lesser degree.

Showing ground-truth labels hurts performance. For GradCAM and BagNet,

we also investigate the effect of showing ground-truth class labels for the presented

images. We have not been showing them to simulate a realistic decision making

scenario where users don’t have access to the ground truth. However, since the task

may be ambiguous for datasets like ImageNet whose images may contain several

objects, we run a second version of the ImageNet studies showing ground-truth class

labels on the same set of images and compare results. Somewhat surprisingly, we find

that accuracy decreases, albeit by a small amount, with class labels. One possible

explanation is that class labels implicitly bias participants to value heatmaps with

better localization properties, which could be a suboptimal signal for the distinction

and output prediction tasks.

Automatic evaluation metrics correlate poorly with human study results.

We also analyze GradCAM results using three automatic metrics that evaluate the

localization quality of post-hoc attribution maps: pointing game [432], energy-based
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pointing game [396], and intersection-over-union [441]. In the agreement studies, we

find near-zero correlation between participants’ confidence in the model prediction

and localization quality of heatmaps. In the distinction studies, we also do not see

meaningful relationships between the participants’ choices and these automatic met-

rics. These observations are consistent with the findings of [117, 287], i.e., automatic

metrics poorly correlate with human performance in post-hoc attribution heatmap

evaluation. See the supp. mat. for details.

2.5.4 A closer examination of prototype-based models

We are the first to conduct human studies of ProtoPNet and ProtoTree which produce

some of the most complex visual explanations. As such, we take a closer look at their

results to better understand how human users perceive them.

A gap exists between similarity ratings of ProtoPNet & ProtoTree and

those of humans. We quantify prior work’s [154, 285] anecdotal observation that

there exists a gap between model and human similarity judgment. For ProtoTree,

the Pearson correlation coefficient between the participants’ similarity ratings and the

model similarity scores is 0.06, suggesting little to no relationship. For ProtoPNet,

whose similarity scores are not normalized across images, we compute the Spearman’s

rank correlation coefficient (ρ = −0.25, p = 0.49 for distinction and ρ = −0.52,

p = 0.12 for agreement). There is no significant negative correlation between the two,

indicating a gap in similarity judgment that may hurt the models’ interpretability.

See the supp. mat. for more discussion.

Participants perform relatively poorly on ProtoTree, but they understand

how a decision tree works. Since the previously described ProtoTree agreement

study does not take into account the model’s inherent tree structure, we run another

version of the study where, instead of asking participants to rate each prototype’s

similarity, we ask them to select the first step they disagree with in the model’s ex-
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planation. The result of this study (52.8%± 19.9%) is similar to that of the original

study (53.6% ± 15.2%); in both cases, we cannot conclude that participants outper-

form 50% random chance (p = 0.33, p = 0.10). To ensure participants understand

how decision trees work, we provided a simple decision tree example and subsequent

questions asking participants if the decision tree example makes a correct or incorrect

prediction. Participants achieved 86.5% performance on this task, implying that the

low task accuracy for ProtoTree is not due to a lack of comprehension of decision

trees. See the supp. mat. for details.

2.5.5 Subjective evaluation of interpretability

To complement the objective evaluation tasks, we asked participants to self-rate their

level of method understanding three times. The average ratings are 3.7 ± 0.9 after

the method explanation, 3.8± 0.9 after the task, and 3.5± 1.0 after seeing their task

performance, which all lie between the fair (3) and good (4) ratings. Interestingly,

the rating tends to decrease after participants see their task performance (p < 0.05).

Several participants indicated that their performance was lower than what they ex-

pected, whereas no one suggested the opposite, suggesting that participants might

have been disappointed in their task performance, which in turn led them to lower

their self-rated level of method understanding.

2.5.6 Interpretability-accuracy tradeoff

In the final part of our studies, we asked participants for the minimum accuracy of

a baseline model they would require to use it over the evaluated interpretable model

with explanations for its predictions. Across all studies, participants require the base-

line model to have a higher accuracy than the model that comes with explanations,

and by a greater margin for higher-risk settings. On average, participants require the

baseline model to have +6.2% higher accuracy for low-risk, +8.2% for medium-risk,

47



and +10.9% for high-risk settings. See the supp. mat. for the full results and the

participants’ reasons for their choices.

2.6 Follow-up study on concept-based explana-

tions

Building on the study design and user interface (UI) of HIVE [190], we designed

and conducted a follow-up study [319] to examine how understandable and useful

concept-based explanations are to humans.

Concept-based explanation methods aim to explain a deep neural network model’s

components and predictions using a pre-defined set of semantic concepts. These

methods evaluate a trained model on a new, “probe” dataset and correlate the model’s

outputs with concepts labeled in that dataset. Existing concept-based explanations

use a large number of concepts: NetDissect [29] and Net2Vec [124] use all 1197

concepts labelled within the Broden [29] dataset; IBD [442] uses Broden object and

art concepts with at least 10 examples (660 concepts); and Concept Bottleneck [200]

uses all concepts that are predominantly present for at least 10 classes from CUB [391]

(112 concepts). However, can people actually reason with these many concepts?

In this study, we examine this important yet overlooked aspect of concept-based

explanations: explanation complexity and how it relates to human capability and

preference. Specifically, we investigate: (1) How well do people recognize concepts in

images? (2) How do the (concept recognition) task performance and time change as

the number of concepts vary? (3) How well do people predict the model output for a

new image using explanations? (4) How do people trade off simplicity and correctness

of concept-based explanations? To answer these questions, we design and conduct a

human study. We describe the study design in Section 2.6.1 and report findings in

Section 2.6.2.
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2.6.1 Human study design

We build on the study design and user interface (UI) of HIVE [190], and design a two-

part study to understand how understandable and useful concept-based explanations

are to human users with potentially limited knowledge about machine learning . To

the best of our knowledge, we are the first to investigate such properties of concept-

based explanations for computer vision models.2

Part 1: Recognize concepts and predict the model output. First, we present

participants with an image and a set of concepts and ask them to identify whether

each concept is present or absent in the image. We also show explanations for 4

classes whose scores are calculated real-time based on the concepts selected. As a

final question, we ask participants to select the class they think the model predicts

for the given image. See Figure 2.3 (left) for the study UI.

To ensure that the task is doable and is only affected by explanation complexity

(number of concepts used) and not the complexity of the model and its original predic-

tion task (e.g., 365 scenes classification), we generate explanations for only 4 classes

and ask participants to identify which of the 4 classes corresponds to the model’s

prediction. We only show images where the model output matches the explanation

output (i.e., the model predicts the class with the highest explanation score, calcu-

lated with ground-truth concept labels), since our goal is to understand how people

reason with concept-based explanations with varying complexity.

Part 2: Choose the ideal tradeoff between simplicity and correctness. Next,

we ask participants to reason about two properties of concept-based explanations:

simplicity, i.e., the number of concepts used in a given set of explanations, and cor-

rectness, i.e., the percentage of model predictions correctly explained by explanations,

which is the percentage of times the model output class has the highest explanation

2We note that there are works examining complexity of explanations for other types of models,
for example, Lage et al. [211] investigate complexity of explanations over decision sets, Bolubasi et
al. [43] investigate this for concept-based explanations for language models.
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Figure 2.3: Human study UI. We show a simplified version of the UI we developed
for our human studies. In Part 1, we ask participants to guess the model’s prediction
for a given image by recognizing concepts and using the provided explanations. In
Part 2, we show participants explanations with different levels of simplicity and cor-
rectness, then ask which one they prefer the most.

score. See Figure 2.3 (right) for the study UI. We convey the notion of a simplicity-

correctness tradeoff through bar plots that show the correctness of explanations of

varying simplicity/complexity (4, 8, 16, 32, 64 concepts). We then ask participants

to choose the explanation they prefer the most and provide a short justification for

their choice.

Full study design and experimental details. In summary, our study consists of

the following steps. For each participant, we introduce the study, receive informed

consent for participation in the study, and collect information about their demo-

graphic (optional) and machine learning experience. We then introduce concept-

based explanations in simple terms, and show a preview of the concept recognition and

model output prediction task in Part 1. The participant then completes the task for 10

images. In Part 2, the participant indicates their preference for explanation complex-

ity, given simplicity and correctness information. There are no foreseeable risks in par-

ticipation in the study, and our study design was approved by our institution’s IRB.

Using this study design, we investigate explanations that take the form of a lin-

ear combination of concepts (e.g., Baseline, IBD [442], Concept Bottleneck [200]).

50



Explanations are generated using the Baseline method, which is a logistic regression

model trained to predict the model’s output using concepts. Note that we are evalu-

ating the form of explanation (linear combination of concepts) rather than a specific

explanation method. The choice of the method does not impact the task.

Specifically, we compare four types of explanations: concept-based explanations

that use (1) 8 concepts, (2) 16 concepts, (3) 32 concepts, and (4) example-based

explanations that consist of 10 example images for which the model predicts a certain

class. We include (4) as a method that doesn’t use concepts. In Jeyakumar et al. [169],

this type of explanation is shown to be preferred over saliency-type explanations for

image classification; here, we compare this to concept-based explanations.

For a fair comparison, all four are evaluated on the same set of images. In short,

we conduct a between-group study with 125 participants recruited through Amazon

Mechanical Turk. Participants were compensated based on the state-level minimum

wage of $12/hr. In total, ∼$800 was spent on running human studies. See the supp.

mat. for more details.

2.6.2 Key findings from the human studies

When presented with more concepts, participants spend more time but

are worse at recognizing concepts. The median time participants spend on

each image is 17.4 sec. for 8 concept-, 27.5 sec. for 16 concept-, and 46.2 sec. for

32 concept-explanations. This is expected, since participants are asked to make a

judgment for each and every concept. When given example-based explanations with

no such task, participants spend only 11.6 seconds on each image. Interestingly, the

concept recognition performance, reported in terms of mean recall (i.e., the percentage

of concepts in the image that are recognized) and standard deviation, decreases from

71.7% ± 27.7% (8 concepts) to 61.0% ± 28.5% (16 concepts) to 56.8% ± 24.9% (32
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concepts). While these numbers are far from perfect recall (100%), participants are

better at judging whether concepts are present when shown fewer number of concepts.

Concept-based explanations offer little to no advantage in model output

prediction over example-based explanations. Indeed, we see that the partic-

ipants’ errors in concept recognition result in an incorrect class having the highest

explanation score. When predicting the model output as the class with the highest

explanation score, calculated based on the participants’ concept selections, the mean

accuracy and standard deviation of model output prediction are 64.8% ± 23.9% (8

concepts), 63.2% ± 26.9% (16 concepts), 63.6% ± 22.2% (32 concepts). These are

barely higher than 60.0% ± 30.2% of example-based explanations, which are simpler

and require less time to complete the task.

The majority of participants prefer explanations with 8, 16, or 32 con-

cepts. When given options of explanations that use 4, 8, 16, 32, or 64 concepts,

82% of participants prefer explanations with 8, 16, or 32 concepts (28%, 33%, 21%

respectively). Only 6% prefer those with 64 concepts, suggesting that existing ex-

planations that use hundreds or even thousands of concepts do not cater to human

preferences. In the written responses, many favored having fewer concepts (e.g., “the

lesser, the better”) and expressed concerns against having too many (e.g., “I think

32 is a lot, but 16 is an adequate enough number that it could still predict well...”).

In making the tradeoff, some valued correctness above all else (e.g., “Out of all the

options, 32 is the most correct”), while others reasoned about marginal benefits (e.g.,

“I would prefer explanations that use 16 concepts because it seems that the difference

in percentage of correctness is much closer and less, than other levels of concepts”).

Overall, we find that participants actively reason about both simplicity and correct-

ness of explanations.
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2.7 Conclusion

In this chapter, we introduced HIVE, a novel human evaluation framework for evaluat-

ing diverse visual explanation methods, and used it to evaluate four existing methods:

GradCAM, BagNet, ProtoPNet, and ProtoTree.

There are a few limitations of this work: First, we use a relatively small sample

size of 50 participants for each study due to our desire to evaluate four methods, some

under multiple conditions. Second, while HIVE takes a step towards use case driven

evaluation, our evaluation setup is still far from real-world uses of interpretability

methods. An ideal evaluation would be contextually situated and conducted with

domain experts and/or end-users of a real-world application (e.g., how would bird

experts choose to use one method over another when given multiple interpretability

methods for a bird species recognition model).

Nonetheless, we believe our work will facilitate more user studies — as demon-

strated by the follow-up study on concept-based explanations [319] — and encourage

human-centered AI explanation research [107, 109, 110, 225]. Our human evaluation

reveals several key insights about the field. In particular, we find that participants

generally believe model predictions are correct when given explanations for them. Hu-

mans are naturally susceptible to confirmation bias; thus, interpretable explanations

will likely engender trust from humans, even if they are incorrect. Our findings under-

score the need for evaluation methods that fairly and rigorously assess the usefulness

and effect of explanations. We hope our work helps shift the field’s objective from

focusing on method development to also prioritizing the development of high-quality

evaluation methods.

53



Acknowledgments

This material is based upon work partially supported by the National Science Foun-

dation (NSF) under Grant No. 1763642. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not nec-

essarily reflect the views of the NSF. We also acknowledge support from the Princeton

SEAS Howard B. Wentz, Jr. Junior Faculty Award (OR), Princeton SEAS Project X

Fund (RF, OR), Open Philanthropy (RF, OR), and Princeton SEAS and ECE Senior

Thesis Funding (NM). We thank the authors of [29, 52, 72, 148, 154, 200, 285, 339, 442]

for open-sourcing their code and/or trained models. We also thank the AMT work-

ers who participated in our studies, anonymous reviewers who provided thoughtful

feedback, and Princeton Visual AI Lab members (especially Dora Zhao, Kaiyu Yang,

and Angelina Wang) who tested our user interface and provided helpful suggestions.

54



Chapter 3

Understanding how explainability

can support human-AI interaction

Despite the proliferation of explainable AI (XAI) methods, little is understood about

end-users’ explainability needs and behaviors around AI explanations. To address this

gap and contribute to understanding how explainability can support human-AI inter-

action, we conducted a mixed-methods study with 20 end-users of a real-world AI ap-

plication, the Merlin bird identification app, and inquired about their XAI needs, uses,

and perceptions. We found that participants desire practically useful information that

can improve their collaboration with the AI, more so than technical system details.

Relatedly, participants intended to use AI explanations for various purposes beyond

understanding the AI’s outputs: calibrating trust, improving their task skills, chang-

ing their behavior to supply better inputs to the AI, and giving constructive feedback

to developers. Finally, among existing XAI approaches, participants preferred part-

based explanations that resemble human reasoning and explanations. We discuss the

implications of our findings and provide recommendations for future XAI design.

This chapter contains materials published in the CHI 2023 paper, “Help Me Help

the AI”: Understanding How Explainability Can Support Human-AI Interaction [192],
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in collaboration with Elizabeth Anne Watkins, Olga Russakovsky, Ruth Fong, and

Andrés Monroy-Hernández.

3.1 Introduction

Artificial Intelligence (AI) systems are ubiquitous: from unlocking our phones with

face identification, to reducing traffic accidents with autonomous cars, to assisting

radiologists with medical image analysis. Being able to better understand these AI

systems is becoming increasingly important—although what exactly that means is

different in different settings: a smartphone user may want to understand how best

to position their face to quickly unlock their phone, a researcher may want to un-

derstand what particular design decisions led to an autonomous car accident, and a

radiologist may want to understand where the medical decision support tool is looking

in suggesting a particular diagnosis.

Over the past years, numerous explainable AI (XAI) methods have been developed

to provide transparency into these AI systems and make them more understandable

to people (see [1, 4, 27, 93, 122, 135, 142, 143] for surveys). However, arguably

these are being developed without embracing the full spectrum of end-user needs.

Particularly for computer vision AI systems (such as the ones described above), with

millions of model parameters processing thousands of low-level image pixels, trans-

lating model outputs into understandable insights is so challenging that proposed

XAI methods are frequently limited by what XAI researchers can do rather than

what AI end-users might need.

In this work, we connect XAI development with end-users and study a real-world

context in which XAI methods might be deployed. Concretely, we set out to answer

three research questions:

• RQ1: What are end-users’ XAI needs in real-world AI applications?
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• RQ2: How do end-users intend to use AI explanations1?

• RQ3: How are existing XAI approaches perceived by end-users?

In scoping our study, we focus on Merlin, an AI-based mobile phone application

that uses computer vision to identify birds in user-uploaded photos and audio

recordings. We chose Merlin because it is a widely-used application that allows

us to connect with a diverse set of active end-users. Concretely, we conducted a

mixed-methods study with 20 Merlin users who span the range from low-to-high AI

background (representing both consumers and creators of AI systems) and low-to-

high domain background (representing both users who know less and more about

birding than the AI system).

With each participant, we conducted an hour-long interview, which included a

survey and an interactive feedback session, to understand their XAI needs, uses, and

perceptions. Our study bridges the gap between XAI research done in the HCI and AI

communities by directly connecting end-users of a real-world AI application with the

XAI methods literature. We do so by mocking up four XAI approaches that could be

potentially implemented into Merlin, i.e., heatmap, example, concept, and prototype-

based explanations of the AI’s outputs. The mock-up explanations enabled us to get

concrete and detailed data about how participants intended to use AI explanations,

as well as how they perceived each approach, in an actual AI use context.

Through our study, we found:

• Participants’ XAI needs varied depending on their domain/AI background and

interest level. While participants were generally curious about AI system de-

tails, those with high-AI background or notably high interest in birds had higher

XAI needs. However, participants unanimously expressed a need for practically

1In this paper, we use the term “AI explanations” to refer to explanations produced by XAI
methods to explain specific AI system outputs.
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useful information that can improve their collaboration with the AI, suggesting

an important area of focus for future XAI development (RQ1, Sec. 3.5.1).

• Participants intended to use AI explanations for various purposes beyond un-

derstanding the AI’s outputs: determining when to trust the AI, learning to

perform the task better on their own without needing to consult the AI, chang-

ing their behavior to supply better inputs to the AI, and giving constructive

feedback to the developers to improve the AI. This highlights the broad range

of XAI needs that should be considered in XAI development (RQ2, Sec. 3.5.2).

• Among existing XAI approaches, participants preferred part-based explana-

tions, i.e., concept [318, 442] and prototype [72, 285] based explanations. Par-

ticipants found them similar to human reasoning and explanations, and the

most useful for the aforementioned purposes. This suggests that to the extent

possible, the XAI community should pay particular attention to these methods,

despite the challenges with their development and evaluation (RQ3, Sec. 3.5.3).

Following our findings, we discuss XAI’s potential as a medium for enhancing

human-AI collaboration, and conclude with a set of recommendations for future XAI

design. However, as with any case study, our findings and recommendations may

have limited generalizability. This is an intentional trade-off made to gain an in-depth

understanding of end-users’ XAI needs, uses, and perceptions in a real-world context,

in line with growing calls for human-centered XAI research [107, 109, 110, 225, 229].

We are hopeful that our study design and insights will aid future XAI research in

other contexts.
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3.2 Related work

3.2.1 From algorithm-centered to human-centered XAI

With the growing adoption of AI, there has been a surge of interest in explainable

AI (XAI) research that aims to make AI systems more understandable to people.

XAI is one of the fastest growing fields with hundreds of new papers published each

year. See [1, 2, 4, 27, 93, 100, 122, 135, 142, 143, 278, 323, 330, 356] for in-depth

surveys, and the following for examples of XAI research done in different disciplines:

AI [125, 188, 200, 306, 352], HCI [153, 355, 395, 434], social and cognitive science [54,

88, 269, 271, 358, 366], and philosophy [31, 181, 275]. XAI is also increasingly being

researched and applied in various domains, including but not limited to healthcare [15,

252, 258, 310, 351, 354, 420, 435], autonomous driving [20, 267, 294], energy and power

systems [253], and climate science [255].

Much of the field’s efforts originally focused on the algorithms, i.e., on providing

explanations of AI systems’ inner workings and outputs, rather than the people or

the context where these systems are deployed. Recently, there has been a growing

recognition that XAI methods cannot be developed “in a vacuum” without an un-

derstanding of people’s needs in specific contexts [107, 109, 110, 225, 228, 229]. In

response, researchers have proposed conceptual frameworks to characterize XAI needs

based on people’s roles [218, 314, 371], expertise [276], or more fine-grained axes of

knowledge and objectives [361]. Others interviewed industry practitioners who work

on AI products to identify their common XAI needs [38, 156, 228].

We join this relatively new line of research, called “human-centered XAI” [107,

109, 110, 225, 228, 229], and foreground the people who use AI systems and their

needs, goals, and contexts in understanding how explainability can support human-

AI interaction. In doing so, we build on the aforementioned frameworks to study

end-users’ explainability needs. Concretely, we developed a survey based on Liao and
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colleagues’ XAI Question Bank [228] to collect concrete data on which aspects of AI

end-users want to know about.

3.2.2 Understanding end-users’ XAI needs

Although human-centered XAI is an actively growing area of research, much of the

work still focuses on developers rather than end-users of AI systems [38, 156, 228].

This gap is unsurprising, since XAI methods have been primarily developed for

and used by developers to inspect AI systems [38, 271]. But it is critical because

end-users may have different explainability needs that XAI methods should but don’t

yet support.

Recently, some researchers began looking at end-users’ XAI needs in context of

specific applications [66, 67, 372]. Tonekaboni and colleagues [372] placed clinicians

in hypothetical scenarios where AI models are used for health risk assessment, and

found that clinicians wanted to know what features the model uses so they can under-

stand and rationalize the model’s outputs. In a lab setting, Cai and colleagues [67]

studied clinicians’ needs in their interaction with a prototype AI model that can assist

with cancer diagnoses, and found that clinicians desired overall information about the

model (e.g., capabilities and limitations, design objective) in addition to explanations

of the model’s individual outputs. In another lab setting, Cai and colleagues [66] ex-

amined what needs pathologists have when using a prototype AI model for retrieving

similar medical images. They also studied how pathologists use their proposed refine-

ment tools, finding that pathologists often re-purposed them to test and understand

the underlying search algorithm and to disambiguate AI errors from their own errors.

These studies delivered rich insights. However, they studied hypothetical or proto-

type AI applications. Hence, an important question remains, which we tackle in this

work: What are end-users’ XAI needs in real-world AI applications? (RQ1). Elish

and Watkins [114] recently provided insights into this question through an in-situ
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study of a deployed, real-world AI system. Specifically, they documented the types

of inquiries physicians asked of nurses tasked with monitoring Sepsis Watch [340], an

AI system designed to predict patients’ risk of sepsis development. However, they did

not study how XAI methods could answer the physicians’ inquiries. In this paper, we

take a step further and contribute to understanding how XAI methods can satisfy (or

not satisfy) end-users’ needs by studying: How do end-users intend to use AI explana-

tions? (RQ2) and How are existing XAI approaches perceived by end-users? (RQ3).

Our work extends prior work in three more ways. First, while all aforementioned

work [66, 67, 114, 372] studies AI applications that make or support high-stakes

medical decisions, we focus on an ordinary application that a diverse set of people

use in everyday life. Second, while prior work does not differentiate their participants,

we study group differences with respect to domain and AI background levels. We are

inspired by recent findings of Ehsan and colleagues [111] on how people’s perceptions

of AI explanations differed based on their AI background. Third, we connect to

the XAI methods literature directly, by mocking-up AI explanations in the studied

application. These in-situ mock-up explanations allowed us to gather detailed data on

how end-users perceive and intend to use AI explanations in their actual use of the AI.

3.2.3 XAI’s role in human-AI collaboration

Our work also connects to the literature of human-AI collaboration [17, 19, 67, 203,

214, 394], sometimes called human-AI teaming [25, 26, 298] or human-AI partner-

ship [286], that studies how people work together with AI to achieve shared goals.

In this work, we didn’t set out to study human-AI collaboration. Our use of this

term emerged from our findings: while studying participants’ XAI needs, uses, and

perceptions, we found that participants described a process for which the language

of “collaboration” proved the best fit. Participants described a two-way exchange,

where they help Merlin succeed in bird identification and obtain more accurate re-
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sults in return, and expressed a strong desire to improve their collaboration with AI

explanations and other information. Hence, we give a brief overview of the human-AI

collaboration literature and describe how our work connects to existing work.

Prior work has studied how people collaborate with different types of AI systems

(e.g., robots [117, 205, 287, 288, 293, 389], virtual agents [19, 83, 106, 291], embedded

systems [12, 67, 117, 119, 170, 190, 212, 214, 286, 288, 376]) in different task contexts

(e.g., content generation [221, 248, 438], medical diagnosis [67, 119, 376], content

moderation [170, 214], deception detection [212, 286], cooperative games [19], and

fine-grained visual recognition [117, 190, 287, 288]). Among these, our work is most

closely related to [117, 190, 212, 287, 288] that studied XAI’s role in AI-assisted

decision making, where AI makes a recommendation and a human makes the final

decision. In this work, we explored what role AI explanations could play in Merlin

where for each bird identification, end-users make the final call based on the app’s

output and their knowledge of birds and the app.

However, different from our work, [117, 190, 212, 287, 288] focused on measur-

ing the usefulness of specific XAI methods in AI-assisted decision making through

lab experiments. These experiments typically consisted of simple tasks (e.g., binary

choice) and were conducted with participants recruited from Amazon Mechanical

Turk. Further, because they were lab experiments, it was well-defined in advance

how participants should use AI explanations in their collaboration with AI (e.g., look

at the provided explanation and judge whether or not to accept the AI’s output). On

the other hand, our qualitative descriptive study allowed us to find that participants

intended to use AI explanations for various purposes, highlighting a broad range of

XAI needs and uses that should be considered in XAI development.
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Figure 3.1: Screenshots of Merlin [368], our study application. Merlin is an
AI-based bird identification mobile phone app. Users upload photos on the Photo
ID feature (top) or sounds on the Sound ID feature (bottom) to get a list of birds
that best match the input. Users also share optional location and season data. The
resulting bird list comes with example photos and sounds.

3.2.4 XAI methods for computer vision

Finally, we review the XAI methods literature to provide background on how we

mocked up AI explanations for Merlin. We focus on methods developed for computer

vision AI models because Merlin uses computer vision to identify birds in user-input

photos and audio recordings. See [1, 27, 56, 122, 135, 143, 323] for overviews.

XAI methods can be categorized along several axes: first, whether a method is

post-hoc or interpretable-by-design; second, whether it provides a global or local ex-

planation; and third, by the explanation form. To begin, the majority of existing

XAI methods are post-hoc methods that explain certain aspects of already-trained
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models [29, 30, 124, 125, 189, 199, 308, 318, 320, 339, 347, 350, 422, 428, 441, 442].

Recently, more interpretable-by-design methods are being proposed; these are typi-

cally new types of computer vision models with an explicitly-interpretable reasoning

process [52, 64, 65, 72, 99, 103, 200, 285, 316]. Second, XAI methods provide ei-

ther a local explanation of a model’s individual output or a global explanation of a

model and its behavior. Local, post-hoc methods include feature attribution [125,

308, 339, 347, 350, 428, 441], approximation [320], and sample importance [199, 422]

methods. Global, post-hoc methods include methods that generate class-level ex-

planations [318, 442] and summaries of what a model has learned [29, 30, 124, 189].

Interpretable-by-design models can provide local and/or global explanations, depend-

ing on the model type. Lastly, explanations come in a variety of forms. Representative

ones are heatmaps [52, 123, 308, 339, 347, 350, 396, 428, 441], examples [199, 422],

concepts [200, 318, 442], and prototypes [72, 99, 285, 288]. To the best of our knowl-

edge, these cover the range of XAI methods for computer vision.

Since we are not affiliated with the Merlin development team and do not have

access to its AI models, it was not possible to produce actual explanations of how

Merlin identifies birds. Hence, we created mock-up explanations. For comprehensive-

ness, we mocked up all four aforementioned explanation forms. We know they all are

plausible XAI approaches for Merlin because they have been demonstrated on bird

image classification models in prior work (e.g., heatmaps in [190, 305, 396], examples

in [288], concepts in [200, 318, 319], prototypes in [72, 99, 285, 288]). See Fig. 3.2

and Sec. 3.4.2 for the mock-ups and their descriptions, and the supp. mat. for details

about how we created the mock-ups.
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3.3 Study application: Merlin Bird ID

As described in the related work section, we looked for a research setting that involves

real-world AI use by end-users with a diverse domain and AI knowledge base, and

that people use in ordinary, everyday life scenarios. Furthermore, we looked for a

domain with significant AI and XAI research. We found Merlin [368] fit what we

were looking for. Merlin is a mobile phone app with over a million downloads that

end-users, with diverse birding and AI knowledge, use for bird identification as they

go out and about outdoors. Most birding apps are digital field guides that don’t use

AI (e.g., Audubon Bird Guide [284], iBird Pro Guide [273], eBird [367], Birdadvisor

360° [309]). Merlin is unique in that it uses computer vision AI models to identify

birds in user-input photos and audio recordings.

Merlin provided a grounded context with real end-users whose experience we can

augment with mock-ups of AI explanations. Furthermore, a large proportion of XAI

methods for computer vision have been developed and evaluated on bird image classi-

fication [72, 99, 103, 138, 200, 285, 288, 305, 316, 383] using the Caltech-UCSD Birds

(CUB) dataset [391]. Hence, the feedback we collect on the mock-up explanations for

Merlin can provide concrete and immediate insights to XAI researchers.

3.4 Methods

In this section, we describe our study methods, all of which were reviewed and ap-

proved by our Institutional Review Board prior to conducting the study.

3.4.1 Participant recruitment and selection

We recruited participants who are end-users of Merlin’s Photo ID and/or Sound ID,

the app’s AI-based bird identification features, with considerations for diversity in

participants’ domain and AI background. Concretely, we created a screening survey
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Table 3.1: Participants’ domain (bird) and AI background. See Sec. 3.4.1 for
a description of the background levels.

Low-AI Medium-AI High-AI

Low-domain P7, P12, P16 P8, P14 P11, P13
Medium-domain P2, P20 P1, P4, P10 P6
High-domain P5, P17 P3, P9, P15 P18, P19

with questions about the respondent’s domain background, AI background, and app

usage pattern (e.g., regularly used app features, frequency of app use). We posted the

survey on a variety of channels: Birding International Discord, AI for Conservation

Slack, various Slack workspaces within our institution, and Twitter. On Twitter, in

addition to posting the survey, we reached out to accounts with tweets about Merlin

via @mentions and Direct Messages.

Based on the screening survey responses, we selectively enrolled participants to

maximize the diversity of domain and AI background of the study sample. See the

table for a summary of participants’ background. The subgroups were defined based

on participants’ survey responses and interview answers. We refer to individual par-

ticipants by identifier P#.

• Low-domain: From “don’t know anything about birds” (P11, P12) to “recently

started birding” (P7, P8, P13, P14, P16). Participants who selected the latter

option typically have been birding for a few months or more than a year but in

an on-and-off way, and were able to identify some local birds.

• Medium-domain: Have been birding for a few years and/or can identify most

local birds (P1, P2, P4, P6, P10, P20).

• High-domain: Have been birding for more than a few years and/or do bird-

related work (e.g., ornithologist) (P3, P5, P9, P15, P17, P18, P19).

• Low-AI : From “don’t know anything about AI” (P16, P17) to “have heard

about a few AI concepts or applications” (P2, P5, P7, P12, P20). Participants
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in this group either didn’t know that Merlin uses AI (P12, P16) or knew but

weren’t familiar with the technical aspects of AI (P2, P5, P7, P17, P20).

• Medium-AI : From “know the basics of AI and can hold a short conversation

about it” (P1, P3, P8, P9, P14) to “have taken a course in AI or have experience

working with an AI system” (P4, P10, P15). Participants in this group had a

general idea of how Merlin’s AI might work, e.g., it is neural network based and

has learned to identify birds based on large amounts of labeled examples.

• High-AI : Use, study, or work with AI in day-to-day life (P6, P11, P13, P18,

P19). Participants in this group were extremely familiar with AI in general and

had detailed ideas of how Merlin’s AI might work at the level of specific data

processing techniques, model architectures, and training algorithms.

Note that our referral here and elsewhere to “high-AI background” participants de-

scribes their expertise with AI in general, not necessarily with Merlin’s AI. All par-

ticipants were active Merlin users who could provide vivid anecdotes of when the app

worked well and not. Regarding frequency of use, 11 participants used it several times

a week, 8 used it once a week, and one used it once a month.

3.4.2 Study instrument

Our interviews were structured in three parts and included a short survey and an

interactive feedback session. The complete study instrument is attached in the supp.

mat.

Context First, we asked the participant a series of questions aimed at learning the

context of their app use. These include questions about their background; when,

where, why, and how they use the app; stakes in their use; and their knowledge

and perception of AI.
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XAI needs Next, we inquired about the participant’s explainability needs through

open-ended questions and a survey we developed from the XAI Question

Bank [228]. The survey lists 10 categories of questions that people might have

about an AI system. Nine categories (Data, Output, Performance, How, Why,

Why not, What if, How to be that, How to still be this) are from [228], and we

added a new Transparency category on expert and social transparency [108].

The survey asks the participant to select questions they “know the answer to”

and/or are “curious to know (more).” We directed the participant to interpret

“know the answer to” as “have a good idea of the answer” for questions whose

exact answers are not available to end-users (e.g., What is the size of the data?).

XAI uses and perceptions Finally, we assessed the participant’s perception of

existing XAI approaches. Using screen sharing during the Zoom interview,

we showed three examples of Merlin Photo ID identifications: the first is a

correct identification; the second is a misidentification, one that people—even

experienced birders—would make; and the third is a misidentification, but one

that people wouldn’t make. Using these as running examples, we introduced

four XAI approaches one at a time and in random order (see the next paragraph

for more information). For each, we asked the participant what they like and

dislike about the approach, what they think can be improved, whether they

want to see it in the app, and how much it helps them understand the AI’s

reasoning and output. See Fig. 3.2 for the identification examples and AI

explanations shown to participants.

To get detailed answers from participants about XAI uses and perceptions, we cre-

ated mock-ups of representative XAI approaches that could potentially be embedded

into Merlin. These included:
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• Heatmap-based explanations that highlight regions in the input image that are

important for the AI model’s output. They represent feature attribution meth-

ods that visualize results via heatmaps (also known as saliency maps) [52,

123, 308, 339, 347, 350, 428, 441] and include popular techniques like Grad-

CAM [339].

• Example-based explanations that show examples in the training data that are

important for the AI model’s output. They include methods that use influ-

ence functions [199] and representer points [422] to identify important posi-

tive/negative training examples for a particular output.

• Concept-based explanations that explain the AI model’s output with text-based

concepts. They include concept bottleneck models [200], as well as methods like

IBD [442] and ELUDE [318] that generate class-level explanations as a linear

combination of concepts.

• Prototype-based explanations that explain the AI model’s output with visual

prototypical parts. They represent methods such as ProtoPNet [72], Pro-

toTree [285], and their recent variations [99, 288].

As described in Sec. 3.2.4, these cover the range of XAI methods for computer vision.

In the supp. mat., we describe in detail how we created the mock-up explanations and

show examples of explanations beyond bird image classification. We emphasize that

the three identification examples are real app outputs that we obtained by uploading

photos to Merlin Photo ID. However, the shown AI explanations are mock-ups that

we designed; they are not representative of how Merlin Photo ID actually identifies

birds. We made this point clear to participants during the interviews. We also

communicated that we were not affiliated with Merlin’s AI development team.
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Figure 3.2: Identification examples and AI explanations shown to partici-
pants. We showed three real examples of Merlin Photo ID identifications, paired
with mock-up explanations we designed for each. Each XAI approach was introduced
with the following description. Heatmap: The AI model considers the red highlighted
regions as evidence for [output, i.e., Evening Grosbeak. House Wren, Ruby-throated
Hummingbird]. Example: The AI model considers the input photo most similar to
the below photos of [output] the AI model has seen. Concept : The AI model consid-
ers the presence of the following concepts as positive/negative evidence for [output].
Prototype: The AI model considers the boxed regions of the input photo similar to
parts of [output] photos the AI model has seen. See Sec. 3.4.2 for details.

3.4.3 Conducting and analyzing interviews

We interviewed 20 participants, each over a Zoom video call, from July to August

2022. The interviews lasted one hour on average. Participants were compensated

with their choice of a 30 USD gift card or a donation to a bird conservation organi-
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zation made on their behalf. We transcribed the interviews and then analyzed the

transcripts. First, two authors read through five transcripts to develop an initial

shared codebook, primarily using descriptive coding, i.e., describing participants’ ex-

pressions of their beliefs, perceptions, and actions. Descriptions were at the semantic

level within the surface meanings of the data (e.g., desire to learn from the AI to

improve their task skills). Next, during multiple group meetings, all authors iterated

on and refined the codebook, by shifting from descriptions of participants’ beliefs to

identification of shared latent, conceptual themes [326]. Desire for improved human-

AI collaboration is an example of a latent, conceptual theme we interpreted based

on participants’ expressed needs for information that would help them understand

the AI’s capabilities and limitations, identify sources of errors, and supply better in-

puts, in order to more effectively interact with the AI and achieve better outcomes.

After we collectively agreed that our conceptual themes were exhaustive, we then

identified and eliminated themes which were redundant or overlapping. Once we had

a final revised codebook, one author then used this codebook to re-code all of the

data. Example codes include: desire to know the AI’s confidence in its output (XAI

needs), learn how to take better pictures/audio recordings for the AI (XAI uses), and

heatmap-based explanations are too coarse (XAI perceptions). We deliberately did

not calculate inter-rater reliability (IRR) as part of our analytic process. McDon-

ald and colleagues [262] argue that such a calculative process is a poor fit for the

interpretive paradigm from which qualitative research has developed. Our codebook

is derived from our collective and agreed-upon interpretations of our participants’

responses to our questions, and so a mathematical post-hoc comparison of individu-

als’ coding selections would bring little rigor to the process. Instead, we focused on

bringing rigor to our analysis through the discussions and selections involved in the

codebook development.
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3.5 Results

We present our results in three parts. We begin by describing participants’ explain-

ability needs (RQ1, Sec. 3.5.1). We then describe how they intended to use AI

explanations (RQ2, Sec. 3.5.2). Finally, we describe how they perceived the four

representative XAI approaches we mocked-up for Merlin (RQ3, Sec. 3.5.3).

3.5.1 XAI needs

Based on open-ended questions and the survey we developed from the XAI Question

Bank [228], we found that while participants were generally curious about AI system

details, only those with high-AI background and/or high-domain interest were willing

to actively seek out this information. However, participants unanimously expressed

a need for information that can improve their collaboration with the AI system.

Participants were generally curious about AI system details, but curiosity

levels differed based on AI background and domain interest

As most other AI applications, Merlin does not provide much information about its

underlying technology. Hence, when we asked participants what they knew about

the app’s AI, all replied that they didn’t know much about system details, although

those with high-AI background (P6, P11, P13, P18, P19) had detailed guesses about

the app’s data, model architectures, and training algorithms.

So what did participants want to know? According to the survey results, par-

ticipants wanted to know everything about the app’s AI. For all questions in the

survey, most if not all participants responded they “know (or have a good idea of)

the answer” and/or are “curious to know (more).” That is, participants were curi-

ous about overall system details (questions in the Data, Output, Performance, How,

Transparency categories), as well as how the AI reasons and makes judgments on
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specific inputs (questions in the Why, Why not, What if, How to be that, How to still

be this categories). We report the full survey results in the supp. mat.

But how curious are they, really? When we tempered self-reported levels of cu-

riosity with interview questions about the effort participants were willing to invest

to satisfy that curiosity, the picture changed. “I wouldn’t go tremendously out of my

way to find the answer to these questions” (P12) was a sentiment shared by many

participants (P1, P5, P6, P7, P9, P10, P12, P13, P16, P20). For instance, P5 said:

“If there’s an opportunity that arises, I’d love to ask about it [...] but I don’t think I

would be contacting people at Cornell [app developers].” Other participants were open

to searching around a bit (P9, P10), listening to talks or podcasts (P12), or reading

some documentation if easily available (P1, P6, P7, P13, P16, P20), but didn’t want

to take the initiative to seek out more information about the AI system, as described

by the questions in the survey.

Exceptions were some participants with high-AI background (P11, P18, P19) or

notably high interest in birds (P1, P4, P8). P11, P18, and P19, likely because they de-

velop AI systems in their work, were very curious about the app’s AI and were willing

to go to the extent of reaching out the app developers (P11, P18) or playing with the

data themselves (P19). For example, P19 said: “I’d love to talk to one of the engineers

and pick their brain [...] or get some data and play with it myself.” P1, P4, P8 have

medium-AI background but their exceptionally high interest in birds seemed to fuel

their curiosity about the app’s AI. They were particularly curious about how the AI

tackles difficult identifications such as mockingbirds that mimic other birds or birds

that are difficult for experienced human birders to identify (e.g., “little brown birds”).

In contrast, participants with low-to-medium AI background (P7, P8, P9, P10,

P12, P16) had lower explainability needs. For instance, P7, P8, and P10 had little-

to-no interest about the how the AI reasons and makes judgments on specific inputs.

P8 said questions in the Why, Why not, What if, How to be that, How to still be this
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categories were not what they would ever think about on their own. P7 expressed

more bluntly that they prefer to keep the AI as a black box: “No, I don’t want to ruin

the mystique.” P9, P12, and P16, on the other hand, became more curious during the

interview, however, their responses suggest that they were not very curious about the

AI in their natural use environment prior to the interview.

In short, all participants were interested in learning more about the AI, but only

those with high-AI background and/or high-domain interest were willing to expend

effort to gain more information about the AI’s system details.

Participants desired information that can improve collaboration with AI

Participants’ expressed needs for explanation shifted, however, when our interview

questions moved away from gauging their curiosity about AI system details, and to-

wards querying their use of the app. While participants’ needs for system details dif-

fered based on background and interest, they unanimously expressed a need for prac-

tically useful information that could improve their collaboration with the AI system.

To begin, participants wanted a general understanding of the AI’s capabilities and

limitations (P1, P4, P5, P16, P19, P20). P1 described a number of ways this under-

standing would help their use of the app: “It would definitely first help me understand

more about when certain identifications may be more or less reliable. But also it will

help me supply better inputs to the app to try and get the best quality identification

results that I can” (P1). Participants had already tried to gain this understanding by

pushing the AI to its limits (P4, P5, P16, P19, P20). Some had tried to fool the AI

with non-bird sounds (e.g., sounds of other animals, bird impersonations) to under-

stand when it works and when it breaks (P4, P5, P16, P19). Others had conducted

more rigorous experimentation by altering their input (e.g., clip the audio recording,

remove location information) and observing changes in the AI’s output to understand

what factors influence the AI’s output and how (P4, P20).
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Another frequently expressed need was for a display of the AI’s confidence (P1,

P2, P3, P4, P6, P13, P18, P20). Participants wanted this information to better

determine when to trust the AI’s output. Concretely, P2 demanded for percentage-

based confidence scores: “If it doesn’t give a percentage [...] I just don’t have a gauge

of how correct it is” (P2). P7 requested the AI to qualify its output by saying “it

may not be the exact match” or give a general answer (e.g., “we don’t know the exact

species but this bird is in the Wren family”).

Lastly, participants wanted the AI to give more detailed outputs (P2, P10, P11,

P12). They demanded information that would help them verify the AI’s output. For

instance, P10 wanted the AI to “highlight the time period of the [sound] clip that it

calls a certain species” because it is hard to know which sound corresponds to which

bird when multiple birds are singing at once. Going a step further, P2, P11, and P12

wanted the AI to specify the type of bird sound it heard. Currently, the verification

process is arduous because each bird species has a number of songs and calls, as

well more specific sounds such as juvenile calls, flock calls, and alarm calls. They

said the suggested features will make the verification process easier and provide more

information about how the AI has made its identification, with which they can more

readily check the AI’s output and determine whether to trust it.

In sum, when we queried participants about their actual, real-world use of the

app, they expressed a desire for information which could improve their use of the app,

particularly in deciding whether or not to trust the AI’s outputs. Intriguingly, they

expressed these desires before we showed them our mock-ups of what AI explanations

for the app might look like. This suggests that these XAI needs were not prompted

solely by seeing AI explanations.
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3.5.2 XAI uses

Next, when we showed AI explanations to participants, they were excited to use them

for various purposes beyond understanding the AI’s outputs: for determining when

to trust the AI, which is a well-known use and commonly-stated motivation for XAI

[118, 270, 333, 425, 437], but also for learning to perform the task better on their own,

changing their behavior to supply better inputs to the AI, and giving feedback to the

developers to improve the AI, which are less discussed uses in existing literature.

Participants intended to use explanations to determine when to trust AI

Many participants said they would use explanations to determine when to believe the

app’s identification result (P1, P4, P8, P11, P13, P18, P20). The need underlying

this use is consistent with the aforementioned need for information that helps them

decide when to trust the AI. While looking at different explanation mock-ups, partic-

ipants gave examples of when their trust would increase and decrease. For instance,

participants said they would feel more confident in the AI’s output when heatmap-

based explanations show that the AI is “looking at the right things” (P8) and when

example-based explanations show example photos that look similar to their input

photo. Conversely, they said they would feel more skeptical when heatmap-based

explanations suggest that an “artifact was important” (P8), when concept-based ex-

planations have errors in their concept recognition (e.g., says there is a long beak

when there is not) (P18), and when prototype-based explanations match photo re-

gions and prototypes that don’t look similar to them (P4). These findings confirm

existing literature [118, 270, 333, 425, 437] and suggest that trust calibration will be

an important use of XAI.
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Participants desired to learn via explanations to better achieve the task

on their own

Intriguingly, a greater number of participants said that they intend to use explanations

to improve their task skills (P1, P2, P4, P6, P7, P8, P9, P10, P11, P13, P15, P17,

P19, P20). Participants viewed the AI as a teacher and were keen to learn the features

it looks at via explanations, so they can look for these features in the future when

they are birding on their own. Participants were aware that the features the AI

looks at may be different from what expert human birders look at. But they weren’t

very concerned about the potential differences. One participant even said it would

be interesting if the AI finds new ways of identifying birds and explanations can

“call attention towards things that people did not really think of before” (P1). Still,

participants preferred that explanation forms be similar to those of human birders.

We elaborate on this point further in Sec. 3.5.3.

Overall, participants were excited about how explanations could make birding

more accessible for themselves and others who lack access to expert resources (e.g.,

mentoring from human birders):

“It [the explanation] is kind of training or giving me more information

and I’m kind of learning these things [what features to look at]. Whereas

before, birders or ornithologists are learning this from mentors or teachers

in the field. But those opportunities are limited based on social relations,

privilege, how closely you are are connected to birding groups and stuff.

And so it will be much more openly accessible if that kind of more com-

parative identification knowledge was accessible through just an app.” –

P1
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Even participants with high-domain background, whose main goal for using the app

was not to obtain such knowledge, appreciated the educational value of explanations

and said explanations would help them learn faster (P16).

These findings are closely related to recent works by Goyal and colleagues [138]

and Pazzani and colleagues [305]. They demonstrated that AI explanations help non-

bird-experts (graduate students in machine learning [138] and undergraduate students

in psychology, cognitive science, or linguistics courses [305]) learn to distinguish birds.

While their experiments employed relatively easy tasks, i.e., assigning bird images to

one of two species options, they showed the potential of learning from AI via AI

explanations. While [138, 305] did not establish that this is a need that people have,

our work provides empirical evidence for it, suggesting learning from AI as another

important use case for XAI.

We postulate this use case stemmed from Merlin’s status as an expert AI system.

Many AI applications are deployed to automate tasks that are easy for people (e.g.,

face verification, customer service chatbot) in settings where it is costly or implausible

to have humans in the loop. In contrast, Merlin possesses expertise that most people

don’t have and need to invest time and effort to gain. This expertise is likely the

source of Merlin explanations’ educational value. In other types of AI applications,

end-users may not intend to learn from AI via explanations.

Participants viewed explanations as an opportunity to be better AI-

collaborators

Participants also saw explanations as an opportunity for action. They looked for

feedback on their own behavior that would in turn enable them to help the AI better

achieve the task (P1, P7, P9, P20). P20 said explanations, by providing insights

into how the AI got an identification wrong, can help them figure out the answer to:

“What would I have to do to change this photo to make it [AI] understand it better?”
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Participants sought out opportunities to improve their own collaborative skills when

working with the AI to achieve a task, because at the end of the day they want to

achieve best possible outcomes:

“You’re still trying to look for the right bird. So if you can adjust human

behavior to get the right answer out of the robot [AI], then that’s helpful.”

– P20

Because of this need, participants were critical towards XAI approaches they thought

didn’t provide actionable feedback. For instance, P9 questioned the utility of heatmap

and example-based explanations: “How is it helpful to the user in the future? Besides

just being cool and interesting? How does it change the user’s use of the app? Does

it make you take a different photo?” They critiqued that these approaches don’t help

them help the AI be more correct.

We view use this intended use of AI explanations as an extension of participants’

current efforts to help out the AI. When describing their use of the app, participants

mentioned several different ways they help the AI perform better. Some were smaller

adjustments on the spot, such as facing the microphone closer to the bird and getting

a sufficiently long recording for Sound ID (P9). Others were more involved, such as

the efforts P1 described as part of their “general workflow” for using Photo ID:

“I basically don’t use images that are either too blurry or do not feature

the bird in an unobstructed manner. I know from my personal experience

using it that Merlin works a lot better if it has a more silhouetted side

profile shot of the bird. [...] So I try to feed Merlin photos taken from

similar angles, also in acceptable lighting conditions. I might have to boost

the contrast or the brightness of a picture artificially to feed it into Merlin

to get better results. If there’s no real contrast, then it’s much harder to

get credible results.” – P1
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In short, participants viewed the AI as a collaborator. They have already found

ways to better work with it, and they intended to use AI explanations to further

improve their collaboration. To this end, they wanted explanations to provide ac-

tionable feedback on their own behavior so that they can supply better inputs to the

AI.

Participants saw explanations as a medium to give feedback to developers

and improve AI

Finally, participants with high-AI background intended to use explanations as a

medium to give feedback to developers and contribute to improving the AI (P13,

P18, P19). These participants mentioned that explanations, by providing more infor-

mation to end-users about how the AI produced its output, enable end-users to give

more detailed feedback. This feedback can then help developers improve the AI sys-

tem. P13 illustrated this process using prototype-based explanations as an example:

“The fact that it [AI] identifies parts of the tree, that’s a great opportunity

to [to have end-users] tap that region and say ‘not a part of the bird’ so

that you can get the users helping you to do some curation and labeling on

the images, which someone could review or whatever. You can make much

higher quality models by getting this sort of the labeling right.” – P13

P18 suggested a similar feedback process for example-based explanations. They

said when end-users disagree with the provided examples of similar looking birds,

they can correct them by saying “no, I think it actually looks more like bird number

three” and help developers align the AI’s notion of perceptual similarity with that of

humans, and improve the AI.

Lastly, P19 described XAI’s potential for creating a positive feedback loop that

helps both end-users and the AI system:
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“So there’s a feedback loop here, right? Because if that [teaching people to

better identify birds] is your goal, and you’re successful in doing that, then

you’re able to rely on people to verify their data, contribute solid data, and

that data can help inform Merlin, which makes Merlin better, which makes

it do its job better. [...] I think no matter what, it [providing explanations]

is kind of beneficial.” – P19

P13 and P18 shared this view and said they would be excited to help developers

improve the app by providing feedback via explanations. P18, in particular, expressed

a strong desire to contribute. They had already been signing up for beta versions of

the app, and the first answer they gave to the question “What would you like to know

more about Merlin?” was: “How I can contribute more” (P18).

In short, participants with high-AI background desired to use explanations to help

improve the AI, so that they can achieve better outcomes with it in the future. We

interpret this as another example of participants viewing the AI as a collaborator

whom they work together with.

3.5.3 XAI perceptions

In this last results section, we describe how participants perceived the four XAI

approaches we mocked up: Heatmap (Sec. 3.5.3), Example (Sec. 3.5.3), Concept

(Sec. 3.5.3), and Prototype (Sec. 3.5.3). We also summarize concerns expressed

toward AI explanations (Sec. 3.5.3), and explore how existing XAI approaches might

satisfy end-users’ explainability needs and goals identified in the previous sections.

Heatmap-based explanations: Most mixed opinions

We received the most mixed reviews for heatmap-based explanations. Participants

who liked heatmaps described them as “fun” (P15), “aesthetically pleasing” (P3),

and intuitive—“it’s very easy, it hits you right away” (P9). Some participants were
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positive because they often use heatmaps in their work and find them helpful for rep-

resenting information (P12, P19). Conversely, a few participants expressed a strong

dislike (P14, P16), e.g., “I hate those things [...] They are simply not intuitive”

(P14). P20 didn’t like heatmaps as an explanation form because “heatmaps feel like

they should be related to weather,” revealing individual differences in perception.

Regarding utility, some said heatmaps help them understand how the AI had made

a mistake (P7, P9, P13). For instance, P19 said they see how the AI made a mistake

for the Marsh Wren photo because the heatmap (in Fig. 3.2) did not highlight areas

that are important for distinguishing different species of Wrens (e.g., Marsh Wren has

a white eyebrow that House Wren doesn’t). However, many participants criticized

that the shown heatmaps were too coarse and uninformative (P1, P2, P3, P4, P6,

P10, P11, P16, P17, P19). “It’s just highlighting the bird” was a common remark.

Participants said heatmaps would be more helpful if they highlight a few salient

features of the bird, just like how human birders focus on a few field markers when

identifying birds.

Finally, some participants thought heatmap-based explanations were inherently

limited by its form. P9, P11, and P17 said heatmaps were unsatisfying because

they don’t answer the “why” question. Regarding heatmaps’ highlighted regions,

P17 asked: “Yes it’s important, but why was it important?” Other participants were

dissatisfied because heatmaps lacked actionable information (P9, P11). They said

knowing which parts of the photo were important to the AI does not help them

change their behavior to help the AI be more correct in future uses.

Example-based explanations: Intuitive but uninformative

There was a consensus among participants that example-based explanations are “re-

ally easily understandable.” However, opinions diverged regarding their utility. Some

found them helpful for determining when to trust the AI (P4, P5, P17, P20) since
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Table 3.2: Summary of participants’ feedback on four XAI approaches. See
Sec. 3.5.3 for details.

XAI Praises Complaints

Heatmap Intuitive, pleasing Unintuitive, confusing
Helpful for spotting AI’s mistakes Uninformative, too coarse

Doesn’t explain why certain parts are important
Doesn’t give actionable information

Example Intuitive Uninformative, impression-based
Helpful for verifying AI’s outputs Doesn’t add much to current examples
Allows end-users to do their own moderation Doesn’t give actionable information

Concept Part-based form Current concepts are too generic
Resembles human reasoning and explanations Meaning of coefficients is unclear
Helpful for verifying AI’s outputs Numbers are overwhelming
Helpful for learning bird identification
Final scores and coefficients are helpful

Prototype Part-based form Cluttered, difficult to see on small screens
Resembles human reasoning and explanations Some prototypes are ambiguous and uninteresting
Intuitive, visual
Helpful for verifying AI’s outputs
Helpful for learning bird identification

they themselves can compare their input photo to the examples in the explanations.

P4 noted that example-based explanations feel “much more collaborative” since they

allow end-users to do their own moderation of the provided information. P19, on the

other hand, were concerned that they would “open the door for user error.” Especially

for difficult identifications where there are only subtle differences between candidate

birds, P19 said example-based explanations wouldn’t help non-bird-expert end-users

arrive at a more accurate identification.

Many participants described example-based explanations as rather uninformative

(P1, P4, P6, P8, P10, P11, P12, P18). Some thought they didn’t add much infor-

mation to example photos that are already shown in the app with the identification

result (P1, P6, P10, P11). They understood the difference between the two, that

example-based explanations convey what the AI considers similar to the input photo,

while the currently provided example photos are part of a fixed bird description and

independent of the input. Still, they thought the explanations were not very useful.

Some even preferred the current example photos because they are high-quality and

well-curated (P1, P6).
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Another frequent criticism against example-based explanations was that they are

too general and impression-based (P4, P8, P10, P12, P18). Participants were frus-

trated that they don’t communicate what features the AI was using to make its iden-

tifications, e.g., P8 said “This kind of tells you nothing.” Due to this lack of specificity,

many mentioned that example-based explanations were not helpful for their various

intended uses, ranging from understanding the AI’s reasoning to supplying better

inputs to the AI to improving their own bird identification skills.

Concept-based explanations: Well-liked overall but overwhelming to some

Participants were largely positive towards concept-based explanations. Most praises

were about their part-based form. They liked that the AI’s output was broken down

into chunks that human birders reason with, i.e., concepts (P3, P4, P11). “This

is what a person looks for basically when they’re identifying a bird,” remarked P3.

Relatedly, participants liked that concept-based explanations resemble the way bird

identifications are taught and shared between birders (P3, P8, P17). P17 said, “before

all this technology, this is exactly how you would basically learn to ID a bird.” For

these reasons, participants mentioned that concept-based explanations seem helpful

for learning to identify birds on their own.

Participants also mentioned other use cases where concept-based explanations can

help. For instance, P11 said they would allow people to check the AI’s output more

thoroughly because people can agree or disagree with the explanation at the level

of individual concepts. As an example, they said they would not believe the AI’s

output if the explanation says there are red feathers in the photo when there are

not. Participants also liked that the shown explanations provided a final score for

the output because they display the AI’s confidence in the identification (P1, P5,

P17). P5 said such scores would be particularly helpful when they are comparing

similar-looking candidate birds.
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Nonetheless, participants mentioned a few areas of improvement. Several partici-

pants pointed out that the concepts in the shown explanations (e.g., long beak, black

feathers, white body) were too general (P1, P4, P5, P10). They suggested adopting

birders’ language and describing birds with more specific terms such as “underbelly,

chest, rump, wing, wingbars, neck, head, cap” (P4). Participants also recommended

making the numbers in the explanations as easily understandable as possible (P6, P9,

P12, P13, P15, P16, P18). P6 pointed out that the current concept coefficients are

confusing: “I have no idea what any of the numbers mean? Like is 1.7 good?” Spec-

ifying what are good and bad numbers and constraining the coefficients’ range may

mitigate some of the confusions. Even with these changes, however, concept-based

explanations may not be everyone’s cup of tea. Some participants shared that they

find the explanation form inherently overwhelming and less attractive (P5, P13, P16,

P20). P16 shared: “I sort of tune out with numbers after a while.” P20 also expressed

their preferences for more visual explanations: “I’m such a visual person that stuff

like this would go right over my head and make no sense for the most part.”

Prototype-based explanations: Most preferred

Many participants picked prototype-based explanations as their favorite (P2, P3, P4,

P6, P7, P9, P10, P12, P13, P15, P16, P17, P19, P20). The part-based form was

clearly preferred, for similar reasons mentioned for concept-based explanations. P15

and P20 said prototype-based explanations are analogous to how they think about

birds, and P1 that they are analogous to how birders teach each other. Between pro-

totypes and concepts, participants tended to prefer prototypes for their visual nature

and information content: prototype-based explanations locate and draw a box around

relevant bird parts in the user-input photo, whereas concept-based explanations only

list the bird parts. P4 summarized the advantages: “It makes a very clear match

between the photo that you’re looking at and a larger base of what this bird should
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look like. It also skips over the whole language issue and is incredibly visual which

I really appreciate.” Participants also noted that prototype-based explanations can

help many uses, e.g., learning how to identify new birds (P2, P8, P13, P15, P19,

P20), understanding how the AI is working (P11, P13, P15, P16, P20), spotting the

AI’s mistakes (P4, P13), and changing their own behavior to supply better inputs to

the AI (P20).

Complaints against prototype-based explanations were mostly minor. Some par-

ticipants described the current version as “cluttered” and “difficult to see” (P1, P4,

P5, P6, P11) and made UI design recommendations, e.g., having one prototype-

photo region match pop up at a time (P11). Participants also mentioned that some

prototypes were ambiguous (P2, P11, P18). For instance, P11 said they had to “ex-

amine the prototype and the example to figure out what the concept was that they

corresponded to.” As a solution, P2 suggested providing a textual description of the

prototype. Another complaint was that some prototypes (e.g., feet) were uninter-

esting (P1, P13, P18). “Very few bird species are differentiated based on their feet,”

remarked P1. For solving this problem, participants suggested curating prototypes

with domain experts and end-users so that the explanation focuses on salient and

interesting features, those that human birders would use to identify birds.

Finally, several participants suggested combining prototype-based explanations

with other approaches (P2, P4, P11, P12, P16, P18, P19). Concretely, P2 sug-

gested combining it with heatmap-based, P2, P12, P16 and P18 with concept-based,

and P4 and P11 with example-based explanations. P19 didn’t specify an approach.

Regarding the combination, some suggestions were general (e.g., show both types of

explanations) while others were more specific (e.g., add concept labels to prototypes).

P12 and P18 particularly advocated for using information from multiple sources (e.g.,

photo, sound, location) for both improving the AI’s performance and explaining its

results to end-users.
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Concerns about AI explanations

Participants were overall excited to see AI explanations in Merlin, however, some

expressed concerns regarding the faithfulness and potential negative effects of ex-

planations. In particular, participants who were familiar with XAI questioned how

faithfully the shown approaches would explain the app’s identification process, if they

were to be implemented in the app (P6, P10). For example, P6 said example-based

explanations feel like “cheating interpretability” unless the AI actually makes iden-

tifications using clustering or other techniques that group similar photos together.

Regarding concept-based explanations, P6 and P10 asked if they imply that the

AI system is interpretable-by-design and actually reasons in two steps (first concept

recognition, then bird identification), or if they were post-hoc explanations produced

by a separate “explainer” system. These questions highlight the importance and chal-

lenges of communicating what AI explanations are actually showing. In some cases,

explanations of AI explanations (“meta-explanations”) may be more complex than

the AI explanations themselves.

Another concern was that explanations might lead to mistrust or overtrust in AI

systems. P20 said a convincing explanation for a misidentification would be “detri-

mental” to end-users who are trying to learn bird identification on their own, because

they might more readily believe in the misidentification and accumulate wrong knowl-

edge. Similarly, P19 said explanations might encourage end-users to “double down

on the incorrect identification,” and even create a negative feedback loop if the AI

system relies on end-users to input or verify data. These concerns are consistent with

findings from recent research [190, 312] that people tend to believe in AI outputs when

given explanations for them, and raise caution against negative effects explanations

might have on end-users, irrespective of XAI designers’ intent.
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3.6 Discussion

3.6.1 XAI as a medium for improving human-AI collabora-

tion

The most surprising finding from our study was the degree to which Merlin end-users

wanted to improve their collaboration with the AI system through AI explanations.

Participants desired information upon which they can act. In particular, they wanted

AI explanations to help them help the AI, e.g., by supplying better inputs to the AI

and providing constructive feedback to developers. We found this an intriguing re-

purposing of explanations, which are typically developed to help people understand

AI’s inner workings and outputs. Collaboration is distinct from usability. Usability

is already often discussed in the XAI literature, where XAI is presented as a means

to provide meaningful information about how an AI output is reached, so that users

can “make decisions more quickly, or to increase decision quality” [218]. However,

our participants desired information that not only improves their decisions based on

the AI’s outputs (usability), but also empowers them to help the AI be more accurate

in the first place and achieve better outcomes together (collaboration).

For designing XAI that supports human-AI collaboration, research in the acces-

sibility field can be instructive. Bigham and colleagues’ work on the VizWiz system

[41] combined computer vision with human labor to support blind end-users in solv-

ing daily visual problems. The VizWiz system allowed end-users to upload a photo of

their environment and ask remote workers visual questions (e.g., where is the tomato

soup can?). In their study, the authors found that input photos presented challenges

to the VizWiz system because the blind end-users provided photos which were “often

blurred, tilted, varied in scale, and improperly framed .. and susceptible to problems

related to lighting” [41]. To overcome these challenges, the authors developed a sub-

system that uses computer vision to provide end-users with prompts around lighting,
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centering, and distance-to-object. These prompts helped end-users take photos that

help remote workers better answer their questions. Like how VizWiz’s subsystem

helped end-users collaborate with VizWiz and remote workers, we argue AI explana-

tions can and should serve as a medium for improving end-users’ collaboration with

AI systems. In addition to providing technical transparency, AI explanations should

move towards providing actionable feedback to and from end-users, empowering end-

users to have more rich and meaningful interactions with AI systems.

3.6.2 XAI design for Merlin

So what should Merlin’s AI explanations look like? In this section, we propose a

design based on participants’ perceptions of the four XAI approaches (Sec. 3.5.3 and

Tab. 3.2). We hope this serves as a helpful example of how end-users’ feedback can

inform and guide the design of AI explanations.

Participants preferred specific, part-based explanations that resemble human rea-

soning and explanations. Participants repeatedly demanded that explanations high-

light a few specific features that the AI uses to make its identifications. XAI ap-

proaches that best satisfied this need were concept and prototype-based explana-

tions that break down the AI’s output with human-digestible units of information,

i.e., concepts and prototypes. Participants also appreciated how similar concept and

prototype-based explanations were to the way human birders identify birds and ex-

plain their identification to others. Heatmap and example-based explanations were

generally less preferred: many participants noted that they were too coarse and

impression-based to be useful.

At the same time, participants wanted explanations to be easily understandable.

“I don’t want to spend extra time trying to understand what I’m looking at” (P5) was a

common sentiment. However, what counts as easily understandable differed between

participants. For instance, participants with low-AI background found concept-based
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explanations overwhelming due to the numbers and calculations. Contrarily, partic-

ipants with high-AI background found all explanations intuitive, with some wanting

even more numbers and other technical details. These findings underline the impor-

tance of our research agenda, as end-users’ XAI needs, perceptions, and variations

therein cannot be anticipated by studying only AI experts, which have made up a

primary study population in XAI research.

Based on these observations, if we were to design AI explanations for Merlin, we

would combine prototype and concept-based. For simplicity, we would start with a

visualization of the user’s input photo overlaid with boxes indicating regions matched

to prototypes. We would then give the user an option to tap on each box to get more

information. The pop-up would show the prototype matched to the boxed region,

accompanied with a short description, i.e., concept name. As some participants men-

tioned, prototypes may be ambiguous. For instance, a prototype visualizing a part of

a bird’s wing may not be informative if end-users don’t know what is special about

that part. A text description (e.g., white stripes across the folded wing) would help

remove the ambiguity. Further, we would curate the set of prototypes for each bird

with end-users and domain experts. We would exclude prototypes that are uninter-

esting (e.g., feet) or redundant, and limit the total number of prototypes so as to not

overwhelm users. Finally, we would optionally provide similarity scores, coefficients,

and final class scores for end-users who are interested in diving into the details.

3.6.3 Implications for future XAI research

Our findings have broader implications for XAI research beyond designing explana-

tions for Merlin. Below we discuss directions we believe AI explanations should be

improved to better serve the needs of AI system end-users.

1. Explanations should be designed with end-users. Participants often exposed

blind spots in existing XAI approaches, revealing a creator-consumer gap in XAI
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research [111]. For example, they pointed out that the concepts used in concept-

based explanations were disconnected from birders’ language (Sec. 3.5.3). The

shown concepts (e.g., white body, long wings) were too generic compared to

birders’ field mark terms (e.g., wingbar, supercilium). Participants also pro-

posed solutions, e.g., develop the bank of concepts with end-users, and offered

to contribute their experience and domain expertise. This example highlights

the need for end-users’ participation in the explanation design process and calls

for more participatory approaches [282] to XAI research.

2. Explanations should answer “why” not just “what.” Several of our participants

were unsatisfied with existing XAI approaches that only explain “what” features

the AI system was using to produce its output, e.g., heatmap explanations that

highlight “what” image regions were important but don’t explain “why” those

regions were important (Sec. 3.5.3). They expressed a desire for explanations

that answer “why” question so that they can gain a deeper understanding of

the AI’s reasoning process. Explaining causal relationships in computer vision

AI models is an open problem, however, it is promising that more researchers

are tackling causal questions in XAI research [279].

3. Explanations should use multiple forms and modalities if warranted. There is no

reason for explanations to be limited to one form or modality. Participants often

suggested combining two or more XAI approaches to produce more informative

explanations (Sec. 3.5.3). They also questioned why Merlin’s identification

features (i.e., Photo ID, Sound ID) and our explanation mock-ups were not

multimodal, when human birders combine evidence from as many sources as

possible (e.g., photo, sound, location) for more accurate bird identification.

Expanding the design space of explanations will lead to XAI methods that

better satisfy end-users’ needs.
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4. Explanations should be rigorously evaluated. Explanations sometimes have (un-

intended) negative effects. Recent works have revealed that explanations can en-

gender over-trust in AI or give misleading understandings [5, 111, 154, 190, 234,

257, 287, 345]. Our participants were also concerned about the faithfulness and

potential negative effects of explanations (Sec. 3.5.3). To preemptively, not re-

actively, address these issues, it is crucial to rigorously evaluate XAI methods on

both their method goals and use case goals throughout the development process.

3.7 Limitations and future work

First, as most of our interview questions and study materials pertain to the Merlin

app, our findings may not generalize to other contexts. This is an intentional trade-

off made in favor of deepening our understanding of end-users’ XAI needs, uses, and

perceptions in a specific context. However, our study design can aid future research on

other types of AI applications and the disparate domains and contexts into which they

are integrated. Another limitation is that we had relatively few participants in some of

the background subgroups; in future research we aim to have more participants from

these subgroups. Finally, we did not have access to other stakeholder groups, such as

the developers and deployers of the Merlin app. However, different stakeholders in AI

systems might have different needs for AI explanations [131, 218]. We plan to pursue

additional research with a more comparative design and study if and how needs differ

across stakeholder groups.

3.8 Conclusion

There is a lack of empirical studies examining end-users’ explainability needs and be-

haviors around AI explanations in real-world contexts. This is important to address in

order to make AI systems accessible, usable, and understandable for more people. In
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this work, we conducted a qualitative, descriptive, and empirical study with 20 end-

users of the Merlin bird identification app. Our questions revolved around real-world

needs and usage, with a goal to surface insights which can be utilized to improve the

design of AI explanations. We found interesting insights into the actionability with

which participants collaborate with the AI system and desire to use explanations to

improve their collaboration. We also gathered concrete feedback on four represen-

tative XAI approaches that could be potentially embedded into Merlin, finding that

participants prefer part-based explanations that resemble human reasoning and ex-

planations. Further, participants’ feedback revealed a creator-consumer gap in XAI,

highlighting a need of involving end-users in the XAI design process. Based on our

findings, we provided recommendations for future XAI research and design.
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Chapter 4

Understanding end-users’ trust in

a real-world AI application

Trust is an important factor in people’s interactions with AI systems. However, there

is a lack of empirical studies examining how real end-users trust or distrust the AI

system they interact with. Most research investigates one aspect of trust in lab set-

tings with hypothetical end-users. In this chapter, we provide a holistic and nuanced

understanding of trust in AI through a qualitative case study of a real-world com-

puter vision application. We report findings from interviews with 20 end-users of

a popular, AI-based bird identification app where we inquired about their trust in

the app from many angles. We find participants perceived the app as trustworthy

and trusted it, but selectively accepted app outputs after engaging in verification be-

haviors, and decided against app adoption in certain high-stakes scenarios. We also

find domain knowledge and context are important factors for trust-related assess-

ment and decision-making. We discuss the implications of our findings and provide

recommendations for future research on trust in AI.

This chapter contains materials published in the FAccT 2023 paper, Humans,

AI, and Context: Understanding End-Users’ Trust in a Real-World Computer Vision

94



Application [191], in collaboration with Elizabeth Anne Watkins, Olga Russakovsky,

Ruth Fong, and Andrés Monroy-Hernández.

4.1 Introduction

Trust is an important factor in people’s interactions with Artificial Intelligence (AI)

systems. For the effective adoption and use of these systems, people must trust them

appropriately. Both unwarranted trust (trusting when the AI system is not trustwor-

thy) and unwarranted distrust (distrusting when the AI system is trustworthy) can

hurt the quality of interactions [24, 167, 270, 413]. To better understand trust and

foster it appropriately in human-AI interactions, recent works have started to inves-

tigate questions such as: What does it mean to trust an AI system? [136, 167, 373]

How is trust established and developed? [177, 230] What factors influence people’s

trust and how? [77, 146, 212, 332, 425, 426, 437].

Trust in AI research, however, is still in a nascent stage. As noted in recent

surveys [379, 386], papers often use different definitions of trust, making their

results difficult to compare. There is also little agreement on how to empirically

study trust, e.g., when to use subjective vs. objective measures. Finally, there

is a lack of research that approaches trust holistically. Most papers study one

specific aspect of trust (e.g., whether explainability increases people’s trust in

AI [26, 57, 77, 190, 198, 212, 287, 288, 332, 425, 432]) in lab settings with hypotheti-

cal end-users. While they provide valuable insights, they do not capture the complex

nuances of trust in real-world contexts.

The FAccT community is increasingly focusing on trust because understand-

ing and measuring it overlap with evaluating fairness, accountability, and trans-

parency of algorithmic systems. Work around those principal interests has begun

to mature, as scholars begin to conduct more empirical research on factors and hu-
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Figure 4.1: Trust model of Mayer et al. [261]. Based on this model, we separate
trust from trustworthiness perceptions that precede it, and two trust-related behaviors
that proceed from it: (1) AI adoption, which corresponds to risk taking in relationship
in the model, and (2) AI output acceptance, which corresponds to outcomes evaluation
in the model. In this work, we describe both general trustworthiness perceptions and
trust attitudes, and instance-specific trust-related behaviors. See Section 4.2.1 for
further discussion. This figure is replicated from the work of Mayer et al. [261].

man perceptions of fairness [97, 144, 180], and going even further, to recognize the

influence of sociotechnical context on factors of fairness, ethics, and accountabil-

ity [140, 266, 329, 338, 353]. However, papers on trust recently published at FAccT

remain largely theory-focused [118, 167, 197, 230, 369, 373]. Our work contributes to

the community by maturing the understanding of trust through an in-depth empir-

ical study, moving the conversation as AI systems move from theoretical, lab-based

projects out into the real world.

The goal of this work is to provide a more holistic and nuanced understanding

of trust in AI through a qualitative case study of a real-world AI application. We

ground our study in Merlin [368], a free mobile phone app that uses computer vision AI

models to identify birds in user-uploaded photos and audio recordings (Figure 4.2).

We chose Merlin because it is a widely-used app that allows us to connect with a

diverse set of active end-users with varying levels of domain (bird) and AI back-

ground, and satisfies the requirements of commonly-used trust definitions [220, 261].

Concretely, we conducted semi-structured interviews with 20 Merlin end-users and
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inquired about their trust in the app from several angles.1 Since we were one of the

first to talk to actual end-users about their trust relationship with the AI application,

we focused on exploring what factors influence trust and how, rather than quantifying

the importance of certain pre-specified factors. Afterwards, we applied Mayer et al.’s

theoretical definition and model of trust [261] (Figure 4.1) to the collected empirical

data, to delineate and describe multiple aspects of trust and their influencing factors.

We make three key contributions in this work: (1) We further the FAccT com-

munity’s understanding of trust, to date still heavy in theory, through an in-depth

qualitative empirical study. Specifically, we study how end-users trust AI in a real-

world context and what factors influence their trust. In doing so, we synthesize

theoretical and empirical trust research by applying Mayer et al.’s theory [261] to

the empirical data we collected. This approach will, we hope, yield insights into how

readily existing theories of trust can be operationalized for empirical research. (2)

We provide a more holistic and nuanced understanding of trust, as compared to the

current state-of-the-art in the field. We find general trustworthiness perceptions and

trust attitudes are distinct from instance-specific trust-related behaviors. While our

participants told us they perceived the app as trustworthy and trusted it, they also

described how they selectively accepted the app outputs after engaging in verifica-

tion behaviors, and sometimes decided against app adoption in certain high-stakes

scenarios. Domain knowledge and context were particularly important factors for

participants’ trust-related assessment and decision-making. (3) Finally, we discuss

the implications of our findings and provide practical recommendations for future

research on trust in AI. Most critically, we advocate for researchers to define and de-

lineate trust from related constructs, and to consider human, AI, and context-related

factors of trust together.

1In the same interviews, we also inquired about participants’ AI explainability needs, intended
uses of AI explanations, and perceptions of existing explanation approaches, and analyzed that
portion of the data in another paper [192].
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4.2 Background and related work

4.2.1 Definitions and models of trust in AI

Trust has a long history of research. Before “trust in AI” was researched, disciplines

ranging from psychology to philosophy to human factors had studied trust in the

context of relationships between humans or between humans and machines. As such,

there are numerous definitions and models of trust, but most have their roots in two

papers: Mayer et al.’s 1995 paper on organizational trust [261] and Lee and See’s

2004 paper on trust in automation [220].

Within trust in AI research, many works do not state a definition of trust, ac-

cording to recent review papers of the field [136, 379, 386]. Among works that do,

the most commonly used definitions come from the aforementioned papers: (1) “the

willingness of a party to be vulnerable to the actions of another party based on the

expectation that the other will perform a particular action important to the trustor,

irrespective of the ability to monitor or control that party” by Mayer et al. [261] and

(2) “the attitude that an agent will help achieve an individual’s goals in a situation

characterized by uncertainty and vulnerability” by Lee and See [220].

Both definitions share the same key elements, as described by Vereschak et

al. [386]: (1) vulnerability : the situation involves uncertainty of outcomes and

potential negative consequences; (2) positive expectations : the trustor thinks that

negative outcomes associated with trusting do not exist or are very unlikely; and (3)

attitude: the general way of thinking and feeling, typically reflected in a behavior,

although not a behavior itself. These elements also distinguish trust from other

related constructs. It is not trust but: confidence when there is no vulnerability;

distrust when there is no positive expectation; compliance or reliance when referring

to a behavior; and perceived trustworthiness when referring to a perception of a

trustee’s characteristics upon which trustors form their trust. For example, when a
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study measures whether participants follow AI’s advice, which is a directly observable

behavior, it is measuring reliance not trust. When a study asks participants to rate

their trust level on a survey scale, it is measuring attitude, except when there is

no vulnerability (e.g., lab experiment with no incentives or risks), it is measuring

confidence not trust. We hope these distinctions reduce ambiguity and confusion

around the terms.

Recently, scholars have proposed specific definitions and models for “trust in

AI” [167, 230]. Jacovi et al. [167] formalized trust in AI as “contractual”: to trust

an AI system is to believe that it is trustworthy to uphold some contract. Their

formalization disentangles trust and trustworthiness, and defines “warranted trust”

as trust that is “caused” by the AI’s trustworthiness. Liao and Sundar [230], on the

other hand, took a communication perspective and proposed a model that describes

how the trustworthiness of AI systems is communicated through trustworthiness cues

and how those cues are processed by people to make trust judgments.

In this work, we adopt the model of trust by Mayer et al. [261], despite it being

developed for organizational trust, because the model’s definition and process orien-

tation fit our work’s objective of holistically understanding trust, in the context of

human-AI interaction. Mayer et al. [261] delineate trust from its antecedents, con-

text, and products, and describe how different components influence each other as

the trustor interacts with the trustee (Figure 4.1). Based on their model, we separate

trust from trustworthiness perceptions (trustworthiness being trust’s antecedent) and

trust-related behaviors, i.e., output acceptance and adoption decisions. The models

by Jacovi et al. and Liao and Sundar [167, 230] are less fitting for our work because

Jacovi et al. [167] focus on formalizing prerequisites, causes, and goals of trust in AI,

and Liao and Sundar [230] focus on modeling the communication of trustworthiness.
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4.2.2 Empirical studies of trust in AI

Trust in AI is a fast-growing research field with significant empirical work. However,

there is surprisingly little research on how end-users trust AI in real-world contexts,

and what factors influence their trust—two gaps our work aims to fill. Filling these

gaps is an important endeavor because while AI systems may perform well in con-

trolled lab settings, their take-up and use in the real world are subject to various

factors, many of which are context-dependent and currently under-anticipated in re-

search and system design.

Much of prior work focus on understanding the effect of certain pre-specified factors

on trust [26, 77, 146, 190, 198, 212, 287, 288, 312, 332, 399, 425, 426, 437]. Most utilize

lab experiments, usually with participants recruited from crowdsourcing platforms

(e.g., MTurk [26, 77, 190, 212, 287, 288, 312, 332, 425, 437], Prolific [287, 288], internal

platform [198]). Typically, these works start with a hypothesis (e.g., explainability

will increase trust in AI). To investigate the hypothesis, they choose a measure of

trust (e.g., self-reported rating on a 1-7 scale [172]), make a change to the factor of

interest in the design of the AI system (e.g., show an explanation of the AI’s output),

and then quantify the effect of that change on participants’ trust. Based on the

results, they conclude the effect of the factor of interest on trust.

The most commonly studied factors in the literature are transparency and ex-

plainability. However, researchers operationalize these factors in several ways. For

instance, transparency is operationalized as providing model internals (e.g., learned

coefficients in a linear regression model) in [312], overall performance measures (e.g.,

accuracy) in [198, 212, 332, 425, 426], confidence scores on individual outputs in

[287, 437], and visualizations of input data distributions and feature engineering pro-

cess in [102]. Similarly, while [26, 57, 77, 190, 198, 212, 287, 288, 332, 425, 432] all

study the effect of explainability on trust, the operationalized explanations of AI’s be-
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havior and outputs greatly vary in approach (e.g., feature attribution, counterfactual

examples) and form (e.g., heatmap-based, part-based).

These works provide insights into the relationship between trust and the factor

of interest, as operationalized in a specific and controlled way. However, they do not

capture the contextual aspects of trust, and the design of these studies does not allow

for discovering new trust-influencing factors. To address these two gaps, we conducted

a qualitative case study of a real-world computer vision AI application and interviewed

its end-users about their trust relationship with the AI. While resource-intensive,

interviews enabled us to explore multiple aspects of trust in depth and identify trust-

influencing factors in a bottom-up manner. The value of qualitative case studies

has been demonstrated in recent works [114, 340, 410]. In one example, Widder et

al. [410] conducted a case study investigating what factors influence engineers’ trust

in an autonomous software engineering tool in a high-stakes workspace. They found

that trust, in their study setting, was influenced by the tool’s transparency, usability,

social context, and the organization’s associated processes. Widder et al.’s work laid

groundwork for our own qualitative study, as we applied their methods to ask similar

questions about a different population in a different domain: end-users of an AI-based

bird identification app. Our work provides complementary insights, and we encourage

the community to conduct more qualitative case studies of trust in AI.

4.3 Methods

In this section, we describe our study methods. All were reviewed and approved by

our Institutional Review Board.
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Figure 4.2: Our study application Merlin [368]. Merlin is a popular AI-based
bird identification mobile phone app. Users upload photos on the Photo ID feature
(left) or audio recordings on the Sound ID feature (right), with optional location and
season data, and get a list of bird(s) that best match the input. See Section 4.3.1 for
more details about the app.

4.3.1 Study application: Merlin Bird ID app

To study trust in AI in a realistic setting, we looked for a research setting that first,

involves real-world AI use by end-users who range in their domain and AI background,

and second, satisfies the requirements of widely-accepted trust definitions [220, 261].

We found Merlin [368] (Figure 4.2) to satisfy both conditions. First, Merlin is a mobile

phone app that identifies bird species from user-input photos and/or audio recordings.

It is an expert application with expertise that most people do not have, i.e., knowledge

and skill to identify thousands of birds. As a free app with over a million downloads, it

is used by people with diverse domain (bird) and AI backgrounds, thus satisfying our

first requirement. Second, while Merlin is generally a low-stakes application, there

are some amount of vulnerability and positive expectations in its use, as we verify in

Section 4.4.1. This allows us to characterize end-users’ attitude toward the app as

trust, and study “trust in AI” and its influencing factors.

4.3.2 Participant recruitment and selection

We recruited participants who are active end-users of Merlin Photo ID or Sound

ID, the app’s AI-based bird identification features, with considerations for diversity

in the domain and AI background. Concretely, we created a screening survey with
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questions about the respondent’s background and app usage pattern (e.g., regularly

used features, frequency of use). We posted the survey on various channels: Birding

International Discord, AI for Conservation Slack, several Slack workspaces within our

institution, and Twitter. On Twitter, in addition to posting the survey, we reached

out to accounts with tweets about Merlin via @mentions and Direct Messages. Based

on the screening survey responses, we selectively enrolled participants to maximize

the diversity of the study sample’s domain and AI background (Table 4.1). All partic-

ipants were active end-users of Merlin who could provide vivid anecdotes of when the

app worked well and when it did not. Regarding the frequency of use, 11 participants

used it several times a week, 8 used it once a week, and one used it once a month.

4.3.3 Interview sessions and analysis

We interviewed 20 participants, over a Zoom video call, from July to August 2022.

The interviews lasted one hour on average, and we compensated participants with

their choice of a 30 USD gift card or a donation to a bird conservation organization

made on their behalf. In the same interviews, we also inquired about participants’

explainable AI needs, uses, and perceptions, and analyzed that portion of the data in

another paper [192]. In this work, we focus on understanding what factors influence

participants’ trust in AI and how. Below we describe the relevant part of the interview

protocol. See the supp. mat. for the interview questions.

We began each interview by introducing the study to the participant, communi-

cating that we were not affiliated with the Merlin development team, and receiving

consent for participation in research. We then asked about their domain and AI

background, as well as their goals and stakes in their app use.

Next, we inquired about the participant’s perception of, experience with, and trust

in the app. Regarding trust, we adopted Benk et al.’s trust enablement paradigm [36]

and asked participants to describe their trust relationships with the app in their own
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terms. We asked about general perceptions and attitudes, such as how accurate and

trustworthy they find the app, as well as specific instances, such as how they assess

the correctness of the app outputs, and in what circumstances they decide to use the

app and not. Scoping down our unit of analysis, from the system as a whole to the

“instance” of use, provided a way to gather dynamic data from our participants about

which contextual factors they considered during their trust-related decision-making.

Finally, we asked the participant whether they would adopt the app in hypothetical

high-stakes scenarios with health-related and financial outcomes:

1. Sick bird scenario: “Suppose you find a sick bird and take it to the vet. The

vet is not sure what bird it is. Would you recommend Merlin to identify the

bird species so that the vet can determine the course of treatment?” We asked

the participant to view Merlin as a decision-support tool as the participant and

the vet will make the final call.

2. Game show scenario: “Suppose you enter a game show where you can win

or lose money based on how well you can identify birds from photos or audio

recordings. You can only use one resource among Merlin, books (e.g., field

guides), the Internet (e.g., search engine, online birder community), and so on.

Which resource would you use? Does your answer change depending on certain

factors?”

We designed these scenarios to introduce high stakes into the AI adoption decision.

These scenario-based inquiries allowed us to observe how participants’ trust-related

assessment and decision-making differ across usage contexts.

We transcribed the interviews and analyzed the transcripts using abductive cod-

ing. Tavory and Timmermans [365] describe abductive coding as an iterative process,

moving between empirical data and available theory, in order to ensure findings are

informed by, in dialogue with, and can contribute to, social-science literature. We first
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Table 4.1: Participants’ domain (bird) and AI background. See the supp. mat.
for a description of the categories.

Low-AI Medium-AI High-AI

Low-domain P7, P12, P16 P8, P14 P11, P13
Medium-domain P2, P20 P1, P4, P10 P6
High-domain P5, P17 P3, P9, P15 P18, P19

read five transcripts to identify an initial set of empirical observations through which

we could develop a theoretical hunch about the nature of trust-related perceptions,

attitudes, and behaviors. We then consulted the literature on trust and trustwor-

thiness, at which point we found Mayer et al.’s trust model [261], which provided a

high-level framework and starting point. Using this model, we collectively developed

a codebook with which we could analyze our initial observations and discern which of

our theoretical hunches were novel contributions. Finally, we coded all of our data,

discussed the results, and drew out themes.

4.4 Results

We start by discussing the definition of trust in our study context (Section 4.4.1) and

then present multiple aspects of participants’ trust in the app: trustworthiness per-

ception and trust attitude (Section 4.4.2); acceptance of individual AI outputs (Sec-

tion 4.4.3); and AI adoption decision (Section 4.4.4). Throughout, we note the factors

influencing participants’ trust, and close with a summary of the results (Section 4.4.5).

4.4.1 Prelude: Is “trust” the right term?

Before diving into the findings, let us first examine if “trust” is the right term for

describing participants’ attitudes toward the app. Recall that trust is defined as an

attitude and requires positive expectations and vulnerability in the trustor-trustee re-

lationship [220, 261, 386]. It is easy to see that participants had positive expectations :
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they were actively using the app because they expected it to help them achieve their

goal of accurately identifying birds. However, is there vulnerability in use of this every-

day app for bird identification? We answer yes because the app is used in situations

involving uncertainty of outcomes and potentially negative consequences, satisfying

[386]’s definition of vulnerability.

First, bird identification is a challenging task that requires the selection of a species

among approximately 10,000 existing bird species, some of which are markedly similar

to each other. Even though the app has been developed by bird and AI experts and

trained on a large database of expert-annotated bird photos and audio recordings,

it is not foolproof. There is always uncertainty about whether it would return an

accurate identification, which participants were aware of. See Section 4.4.2 for detailed

accounts of how participants perceived the app’s ability and trustworthiness.

There are also potential negative consequences when the app makes a misidenti-

fication. We heard the following responses when we asked participants what they

gain and lose when the app succeeds and fails on the task. As gains, participants

mentioned curiosity satisfaction (All), joy (P1, P7, P9, P12), bird knowledge (P4,

P5, P8, P9, P10), and improved birding experience (P1, P2, P3, P4, P10). As losses,

although several participants said “nothing material” (P1, P3, P11, P12, P13, P15,

P16, P17), many expressed that they feel “disappointed”, even “frustrated”, when

the app fails because they really care about correctly identifying birds and would

like to gain accurate knowledge about birds (P1, P4, P5, P6, P9, P10, P13, P15,

P18, P19, P20). Some noted that misidentifications can lead to people gaining wrong

knowledge, (unintendedly) sharing misinformation by reporting wrong bird sightings,

and negatively impacting science and conservation efforts (P4, P5).

In summary, there were positive expectations and vulnerability in participants’

use of the app, although there were individual differences in the amount of stakes

participants placed in their use. Hence, we conclude “trust” is the right term for
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describing participants’ attitudes toward the app. With this established, we now

proceed to describe participants’ trust in AI in three parts.

4.4.2 Trustworthiness perception and trust attitude

We begin unpacking participants’ trust in AI by explaining how they assessed

the app’s trustworthiness, a key antecedent to trust in Mayer et al.’s model [261].

Overall, participants assessed the app to be trustworthy and trusted it. We draw

this conclusion based on participants’ responses regarding the app’s ability, integrity,

and benevolence—the three factors of perceived trustworthiness in Mayer et al.’s

model (Figure 4.1). Participants assessed that the app possesses all three, based on

their prior experience with it, its popularity, and the reputation of the domain and

the developers.

Participants assessed ability based on their prior experience with the AI

and the AI’s popularity

Ability refers to the trustee’s skills and competencies [261]. For automation systems,

Lee and See [220] describe it as performance, i.e., how well the automation is per-

forming. Participants were overall impressed with the app and judged it to have high

ability. Most described the app as very successful and that it seemed to be correct

9-10 out of 10 times, based on their prior experience with the app.2 Exceptions

were P2, who said Sound ID often made mistakes, and P6, who was disappointed

with Photo ID. Most other participants were very impressed and described the app

as “pretty insane” (P15), “perfect” (P11), and gave high praise despite having ob-

2Recent works [24, 336] suggest there may be a gap between the actual and perceived trustwor-
thiness of an AI system. In our study context, however, participants’ assessment of the app’s ability
seems reasonably accurate. Our judgment is based on public knowledge, as we are not affiliated
with the app development team. Regarding Photo ID, one of the developers said in 2016 that its
“accuracy is around 90 percent if the user’s photo is of good quality” [307], and we expect the
performance would have increased. Regarding Sound ID, recent research from the Cornell Lab of
Ornithology suggests that AI models are highly capable of sound-based bird identification [174].
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served mistakes: “I’ve had one or two times where I’ve thought I don’t believe that’s

really that bird? [...] But I trust it. I trust it” (P14). Intriguingly, some partici-

pants mentioned they could not accurately assess the app’s ability due to their lack

of domain knowledge (P11, P12, P13). For instance, P11 said: “As far as I know,

it’s been perfect, but I don’t know enough to know if it would be making mistakes.”

We discuss this point further in Section 4.4.3, where we describe how participants

assessed the correctness of individual app outputs. Finally, while most assessed the

app’s ability based on their own prior experience, P12 made an assessment based on

the app’s popularity, which is an external factor: “I imagine that if it has such a

wide user base, it would be pretty accurate” (P12).

Participants assessed integrity based on the developers’ reputation

Integrity refers to the degree to which the trustee adheres to a set of principles that are

acceptable to the trustor [261]. For automation systems, Lee and See [220] describe

it as a process, i.e., in what manner and with which algorithms it is accomplishing

its objective. We found that participants believed in the app’s integrity because

of the reputation of the developers, the Cornell Lab of Ornithology, which is a

respected institution with a long history of bird science and conservation efforts. Most

participants were well aware that the app was developed by this lab (P1, P3, P4, P5,

P8, P9, P11, P12, P13, P14, P15, P17, P18, P19). Participants were also familiar

with the lab’s other apps (e.g., eBird, BirdNET, iNaturalist) and resources (e.g., All

About Birds, Macaulay Library), describing these and the app as their “go-to” (P15)

when they want to learn about a specific bird. P14 specifically said they trusted the

app because it was developed by this lab: “I know that Cornell Ornithology Lab does

excellent, excellent stuff. I mean, if you’re going to try and learn anything about a

bird, just go there. Don’t try anything else. Don’t even bother the Audubon Society.

Just go straight to Cornell. So I trusted it [the app] for that reason.” Participants
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did not know how the app was developed or how it works, since such information is

not publicly available. Nonetheless, they believed in the app’s integrity because they

believed in the authority and expertise of the app developers.

Participants assessed benevolence based on the domain’s reputation

Benevolence refers to the extent to which the trustee’s motivations are aligned with

the trustors’ [261]. For automation systems, Lee and See [220] describe it as purpose,

i.e., why the automation was built originally. We found that participants believed in

the app’s benevolence because of the positive reputation of the domain, i.e., the

birding community that they and the app developers are part of. For instance, P18

described the birding community as a place where everyone tries to be accurate and

do good: “I think birders, in general, are a community where there’s very few people

who try and do adversarial attacks because it doesn’t benefit anybody [...] the value of

the birding community is that everybody is trying to be accurate.” Some participants

contrasted the app with other AI applications. For instance, P2 described the app as

not having “malicious intent” compared to advertisements. P9 contrasted the app

with other AI applications they found “creepy” and “harmful,” such as voice assistants

that may be “monitoring” user behavior. Although the app may also collect personal

location data, participants seemed less concerned overall. P18 and P19 even wanted

their data to go somewhere and be used (e.g., for science and conservation efforts or

improving the app) so that it is “contributing something to society” (P19).

4.4.3 Output acceptance

Participants described the app as trustworthy and trusted it; however, they did not

accept its outputs as true in every single instance of use. To the extent possible, partic-

ipants carefully assessed the app’s outputs, using their knowledge about the domain,

and then made acceptance decisions. Our findings reveal a gap between general trust-
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worthiness perceptions and trust attitudes, and instance-specific trust-related behav-

iors, highlighting the importance of considering both aspects in trust in AI research.

Participants assessed AI outputs based on likelihood and task difficulty

Participants had developed heuristics for judging the correctness of app outputs (P1,

P2, P6, P16, P17, P19). One heuristic was assessing the likelihood of spotting a

bird species in a given area. Participants described they were more trusting of the

app’s output when the identified species is common for the area, and less trusting

when it is rare. For instance, P6 said they judge the output’s correctness based on

recent sightings in the area and rarity: “If it’s a common bird or even just a rare bird,

uncommon or something like that, then maybe [it is correct]. But if it’s a super rare

bird, then definitely not.” Another heuristic concerned task difficulty. P1’s response

well explains this heuristic: “I trust it [the app] more when I know that I’m looking at

something that should be relatively unambiguous. If I’m looking at something that’s

like a Female Warbler or a Female Sparrow, which might just be a little brown bird,

then I’m a little bit more skeptical of the result.” For context, “little brown bird” is a

term used by birders to describe a large number of species of small brown passerine

birds, which are known to be notoriously difficult to distinguish. P1 described them

as “really hard to ID, even for a human ornithologist.” We note that both heuristics

require domain knowledge as participants must know whether the identified species

is common or rare for the area, and which birds are difficult and easy to identify.

Participants verified AI outputs with input-output comparisons and infor-

mation from other sources

Some participants verified the outputs via input-output comparisons, i.e., they

compared input photos and audio recordings to reference photos and audio recordings

of the identified species, which are provided in the app (P1, P10, P20). For instance,
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P10 verified Photo ID outputs as follows: “I go back and look at reference photos of

that bird and then try to map field markings. So I’ll try to see if the bill shape lines

up.” P20 described a similar process for verifying Sound ID outputs: “They have that

drop down [menu] that has the different sounds, and I will literally just play one until

I find one that I’m like: oh it’s that, that’s the exact sound.” In short, participants

looked for the resemblance between the inputs and the references, and then assessed

the outputs’ correctness. This verification does not require domain knowledge per

se; however, participants with it could more easily verify the output as they would

know what to check.

Participants also described using information from other sources (P1, P4,

P10, P15, P18). If the app identified a bird based on sound, participants tried

to confirm it with their own visual identification, and vice versa (P10, P18). For

instance, P10 said they try to visually confirm the bird when using Sound ID: “I’ll

also look for that bird and see if I can see it as well. Or see if it matches a bird

that I have seen.” Some participants took a step further and consulted other birders,

through their personal networks or online communities (P1, P4, P15). P1 said they

often share the app’s outputs with friends and birders online. They also remarked,

“If there was something that I knew was more of an ambiguous result, I would usually

consult somebody” (P1). P4 was an especially active member of online communities.

They said they ask questions on Discord and Reddit and consult expert birders in

the area: “I do oftentimes reach out to people whose names I find on e-bird. I see

local checklists and I’ll either find them on Facebook or LinkedIn or something and

send them a message.” Note that cross-checking requires domain knowledge for

identifying birds on their own, whereas consulting other birders does not.

111



Some participants disregarded AI outputs when they could not verify

For some participants, verification was a crucial and necessary step for output accep-

tance (P3, P4, P15, P18). When unable to verify, they disregarded the app output.

For example, P15 said they’ve never only relied on the app when identifying a bird

they have not seen before. They almost always sent the output to more experienced

birders and received their confirmation. P18 was also strict about when they accept

app outputs, stating, “I never, I never count on my bird registry anything that Sound

ID says that I can’t kind of confirm either through the facts of it or through a visual

ID” (P18). These participants disregarded unverifiable app outputs, despite their

positive assessment of the app’s ability and trustworthiness, revealing a gap between

general trustworthiness perceptions and instance-specific trust-related behaviors.

Not all participants had the ability to assess the correctness of AI outputs

So far we described various processes through which participants decided whether or

not to accept app outputs. However, not all participants had the ability to assess

the correctness of app outputs. In Section 4.4.2, we described how some participants

with little domain knowledge said they could not accurately assess the app’s ability

(P11, P12, P13). These participants also said that because they “know so little about

birds” (P12), they could not “validate or reject” (P11) app outputs, especially if they

can’t get information from other sources. P13 said, “If it’s misidentifying a bird that

I can’t see, then I have no way to know that.” This finding suggests that domain

knowledge is a key factor in appropriate trust calibration and has a wide influence on

participants’ interactions with the app.

4.4.4 Adoption

The final aspect of trust in AI we analyze is how participants made AI adoption de-

cisions. We compared participants’ decision-making process between their actual use
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setting and two hypothetical high-stakes scenarios (see Section 4.3.3 for the scenario

details). We found that while participants always used the app in their actual use

setting, they made different adoption decisions for the high-stakes scenarios based

on various factors: the app’s ability, familiarity, and ease of use (AI-related factors);

participants’ ability to assess the app’s outputs and use the app (Human-related fac-

tors); and finally, task difficulty, perceived risks and benefits of the situation, and

other situational characteristics (Context-related factors).

In their actual use setting, participants never decided against using the AI

We found that participants always use the app when opportunities arise. It is not

that participants absent-mindedly used the app. Participants were aware of when the

app works well and not, and knew how to help the app be more successful, e.g., by

supplying better input photos and audio recordings. However, when we asked how

they make app adoption decisions, they only described situations where they decided

to use the app, and never situations where they decided against using it.

There could be several reasons for this finding. First, the app has a low cost of

use. Since the app is free, the only use costs are the time and effort involved in taking

photos or audio recordings and inputting them into the app, and perhaps a small

amount of phone battery. Second, the risks of use are also low. There are potential

negative consequences when the app misidentifies, e.g., gaining wrong knowledge, as

described in Section 4.4.1. However, end-users can mitigate these risks by verifying

the output and rejecting it if needed. Finally, we only interviewed active end-users of

the app, who are likely to continue to use the app because they are satisfied with it.

Past or non-users may provide different responses.
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In hypothetical high-risk scenarios, participants carefully considered the

AI’s ability and various contextual factors

When we presented participants with hypothetical high-risk scenarios, we observed a

different decision-making process around app adoption. Participants considered the

app’s ability with respect to various situational characteristics. For example, for

the sick bird scenario, some participants judged the app is worth a try. P15 described

using the app as “something that wouldn’t hurt” since they are in a situation where

both they and the vet could not identify the bird. They expressed some degree of

confidence in the app’s ability: “I feel like Merlin’s not gonna tell you that a baby

hawk is a chickadee” (P15). Similarly, P17 said they “would definitely recommend

it [the app] to get into the right ballpark.” Still, they recommended consulting other

scientific resources and doing a “triple check” of the app’s output, since the risk of

misidentification, i.e., the sick bird receiving the wrong treatment, is higher than the

risk in their actual use settings, e.g., gaining wrong knowledge.

Other participants were skeptical that the app could identify the sick bird (P3, P6,

P15, P19). P4 did not think the app could identify birds that they and the vet could

not: “Assuming that I don’t know what the bird is and they [vet] don’t know what the

bird is, this bird is some ambiguous-looking bird. In those cases [...] I don’t think

Merlin would be able to know.” P15 pointed out that sick birds are often “fledglings,

juveniles” which are “harder to ID for everybody in real life and presumably harder

for Merlin.” P6 noted that sick birds may be “out-of-distribution” for the app due

to their underrepresentation in the training data: “I assume Merlin is not trained on

sick birds, so I can totally see it doing something crazy.” These participants weighted

the app’s ability against the task difficulty and decided against adopting the app

in the sick bird scenario.

Similarly, for the game show scenario, participants jointly considered the app’s

ability and the situation’s characteristics. P1 and P4 said they would choose the app

114



Table 4.2: Factors that influenced participants’ trust in AI. See Section 4.4.5
for a discussion.

Human-related factors AI-related factors Context-related factors

Domain knowledge Ability Task difficulty
Ability to assess the AI’s outputs Integrity Perceived risks and benefits
Ability to assess the AI’s ability Benevolence Situational characteristics
Ability to use the AI Popularity Domain’s reputation

Familiarity Developers’ reputation
Ease of use

if there are time constraints, but otherwise choose “a good quality field guide” (P1)

or “Discord” (P4). Similarly, P15 said they would choose the app if they need to give

an answer “quickly, within 30 seconds” but otherwise consult other birders. Others

said they would choose the app if they have to do sound-based identification on

the game show (P6, P10, P12, P20), describing difficulties with text-based referencing

of sound: “some books saying ‘it goes da-da-da’ is not helpful” (P6). P20 explained

their reasoning in detail: “If I’m on this game show and it plays a sound, I would

definitely want to use the app [...] but if it shows me a bird, I might just want to

google it because I have enough knowledge personally that I could probably guess what

type [...] and then search by colors. So I guess it comes down to what I think the

app does the best, which is sound, versus what I think I can get away without it.”

Participants considered the app’s ability not only on its own, but also in comparison

to other resources. Again, participants carefully made app adoption decisions as the

perceived risks and benefits of the scenario, i.e., loss and gain of money, are higher

than those of their actual use setting.

Some participants adopted the AI due to familiarity and ease of use

Two other factors that impacted participants’ app adoption decisions were familiar-

ity and ease of use. For the sick bird scenario, P2 said they would definitely used

the app because it “feels kind of like second nature.” P16 also chose to identify the
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sick bird with the app because using the app “would be the easiest.” Similarly, for

the game show scenario, P2 picked the app as their top choice because “it’s so easy

[...] it doesn’t take all that much time to look through everything.” P16 mentioned

both familiarity and ease of use: “I think Merlin would make the most sense since I’m

familiar with it.” They described other resources as requiring more “work” by end-

users, compared to the app where end-users can just input bird photos and/or audio

recordings: “You still have to do a lot of work to do like a Google search compared to

this [app]” (P16).

P4 described another aspect of familiarity: their ability to use the app. They

said, “I definitely would use Merlin because I’m familiar with it. And I trust my

ability, like I know how to operate it pretty well” (P4). We found this response

particularly interesting because the ability to use the AI has not been explored much

in the trust in AI literature. However, we expect it will become an important topic in

trust and human-AI interaction research, as AI applications grow in complexity and

require end-users to develop skills for effective use of AI.

Finally, some participants with little domain knowledge said they would adopt

the app because other resources lack familiarity and ease of use (P11, P17). For

instance, P17 described field guides as a more advanced and less accessible resource

than the app “because of the way they’re structured and organized.” They said the

app will get them closer to an answer “a lot quicker” (P17). Similarly, P11 mentioned

they could not effectively use the Internet search engine because they do not know

enough about birds to effectively describe the bird they have to identify. They added,

“Maybe someday, when I know a lot about birds, I would feel comfortable using another

resource that’s more of an expert than Merlin is, but I think Merlin is the right level

of expertise for what I know right now” (P11).
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4.4.5 Summary of the results

In short, we found that end-users’ trust relationship with AI is complex. Overall,

participants found the app trustworthy and trusted it. Still, they carefully assessed

the correctness of individual outputs and decided against app adoption in certain

high-stakes scenarios. This finding illustrates that trust is a multifaceted construct

that must be approached holistically. To get a full and accurate picture of trust,

it is crucial to examine both general aspects such as trustworthiness perceptions

and trust attitudes and instance-specific aspects such as AI output acceptance and

adoption decisions.

We also highlight that trust in AI is influenced by many factors. In Table 4.2, we

organize the factors we identified based on whether they are related to the human

trustor, the AI trustee, or the context, following prior work [146, 168, 178]. Human-

related factors include domain knowledge and other factors influenced by it, such

as the ability to assess the AI’s outputs, the ability to assess the AI’s ability, and

the ability to use the AI. AI-related factors include internal factors such as ability,

integrity, and benevolence; external factors such as popularity; and user-dependent

factors such as familiarity and ease of use. Context-related factors include task

difficulty, perceived risks and benefits of the situation, other situational characteris-

tics, and the reputation of the domain and the developers. We emphasize that this

is not a complete set of factors that can influence trust in AI, but what we observed

in our case study in a bottom-up manner.

4.5 Discussion

In this section, we discuss the implications of our findings (Section 4.5.1), reflect

on the applicability of Mayer et al.’ trust model [261] (Section 4.5.2), examine the
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limitations of our work and opportunities for future work (Section 4.5.3), and provide

practical recommendations for future research on trust in AI (Section 4.5.4).

4.5.1 Key findings and their implications

Insights from instance-specific trust-related behaviors

Participants’ instance-specific decisions about AI output acceptance and adoption

were particularly useful for understanding what factors influence trust in AI and

how. In Section 4.4.3, we described how participants trusted the app output more

when the task is easy (e.g., “relatively unambiguous” bird) and less when the task

is difficult (e.g., “little brown bird”). Similarly in Section 4.4.4, we described how

some participants were hesitant to use the app to identify the sick bird in the first

hypothetical scenario because they judged the task would be too difficult for the

app. These examples illustrate the rich reasoning behind participants’ trust-related

behaviors, where factors of trust interact with each other. Participants used their

domain knowledge (human-related factor) to assess task difficulty (context-related

factor) and weighted it against the app’s ability (AI-related factor) to decide whether

or not to accept the app output or adopt the app in the given situation.

In earlier sections, we also described domain knowledge’s influence on partici-

pants’ ability to assess the app’s ability (Section 4.4.2) and outputs (Section 4.4.3).

Participants with domain knowledge assessed the correctness of an app output by,

for example, cross-checking it with their own identification and judging its likelihood

based on their knowledge of what birds are common and rare in the area and what

birds are easy and difficult to identify. Participants without domain knowledge, how-

ever, had difficulties in assessing the correctness of app outputs and, consequently,

the app’s overall ability.

Taken together, these findings have two important implications. First, they imply

that domain knowledge can be a widely influential factor of trust. In the above
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examples, participants assessed task difficulty based on their domain knowledge of

which birds are difficult and easy to identify. Further, participants’ domain knowledge

directly influenced their ability to verify the app’s outputs and overall ability, which

can have far-reaching influences on participants’ trust and interaction with the app.

Second, they imply that participants expected the app to struggle on similar tasks as

humans do, when current research suggests AI models do visual recognition differently

from the human brain [380] and make different mistakes than humans [201, 377, 419].

However, we cannot rule out the possibility that the app struggles on similar bird

identification tasks as humans do, since we do not have access to its underlying

AI models. This implication calls for further research on the relationship between

end-users’ domain knowledge, perceptions and expectations toward AI, and trust

calibration ability.

The surprising impact of domain knowledge

As aforementioned, participants’ domain knowledge had a wide impact, influencing all

aspects of their trust in the app. We found this surprising because domain knowledge

has not been discussed much as a factor of trust in the trust in AI literature. Upon

reflection, we speculate this is because most AI applications are either (1) non-expert

applications that do not have a notion of domain expertise (e.g., image search) or

(2) expert applications that are developed to be used by domain experts only (e.g.,

clinical decision-support tool). Our study application is unique in that it is an ex-

pert application that is used by both domain experts and non-experts. Further, our

study design, specifically our choice to recruit participants with varying background

(Table 4.1), allowed us to observe group differences with respect to domain knowledge.

This observation has particularly important implications for expert AI applica-

tions that support high-stakes decisions about people. Using clinical decision-support

tools as an example, we expect domain knowledge differences to lead to very differ-
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ent trust-related assessments and decision-making between experts (clinicians) and

non-experts (patients, regulators, and other stakeholders). As we saw in our case

study, non-experts may not be able to spot the AI’s mistakes and assess its trust-

worthiness as accurately as domain experts. Even though non-experts are not the

intended end-users of this AI (clinical decision-support tool), it is important that they

have mechanisms to appropriately calibrate their trust in the AI. Hence, we urge the

community to consider domain knowledge when designing AI applications and trust

calibration interventions. For example, a system could assess the verification behav-

iors used by domain experts, and build these options into the system so that they are

accessible to experts and non-experts alike.

The importance of contextual factors and contextually-grounded studies

Finally, we highlight the importance of contextual factors and contextually-grounded

studies for understanding their influences on trust. When participants were describing

the app’s trustworthiness, we observed that the positive reputation of the domain

(birding community) and the developers (Cornell Lab of Ornithology) led them to

positively assess the AI’s ability, integrity, and benevolence (Section 4.4.2). We have

two points of discussion on this finding. First, it shows that external contextual

factors (reputation of the domain and the developers) influence internal AI factors

(ability, integrity, and benevolence), underlining the impact of contextual factors

on trust. It also reiterates that factors influence each other, and calls for research

that studies the interactions between factors. Second, while this specific finding is

context-dependent, it provides generalizable insights. For example, we can anticipate

end-users to have doubts about an AI application’s ability if the AI is not developed

by a well-known institution; benevolence if the AI seems to have a different goal from

them (e.g., recommendation systems trying to sell unneeded products); and integrity
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if the AI seems to make decisions with wrong reasons (e.g., decision-making systems

discriminating based on protected attributes).

4.5.2 Adapting existing trust models to AI

In this work, we used Mayer et al.’s model for organizational trust [261] to analyze

the empirical data we collected on trust in AI. Overall, we found the model applicable

and useful for understanding trust in AI. In particular, we found helpful the way in

which it breaks down “trust” into multiple components and delineates trust from its

antecedents, context, and products (Figure 4.1). However, as with any model, there

were some limitations and challenges in its application. First, since the model was

originally developed for trust between people, we had to make adaptations to apply it

to trust in AI. For instance, when describing participants’ trustworthiness perceptions

(Section 4.4.2), instead of using Mayer et al.’s [261] definitions of ability, integrity,

and benevolence, we used Lee and See’s [220] automation-friendly translations of these

factors: performance, process, and purpose. Second, Mayer et al.’s model [261] is by

no means a comprehensive trust model. This is expected as the work’s goal was not

to list all possible antecedents of trust. Hence, we drew from other works [146, 152,

168, 178] to categorize the factors we identified into human, AI, and context-related

factors. Third, in our study, we did not observe the influence of trustor’s propensity,

one of the model components. However, this result does not imply that trustor’s

propensity is an unimportant factor of trust in AI. Future research, in particular

survey and experimental studies, are needed for such conclusions.

4.5.3 Limitations and future work

Our work has the following limitations. First, as with any case study, our findings

are context-specific. However, the gained insights, e.g., the trust-influencing factors

we identified in Table 4.2, may generalize to other settings. Further, our holistic
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approach to trust may aid future research on other types of AI applications. Another

limitation is that all participants were active end-users of the app. Those who just

started using it, stopped using it, or chose to not use it are not represented in the

study. We encourage a more comparative study design for future work so that findings

can be compared across non-users and user subgroups. Finally, due to the highly

multifaceted and dynamic nature of trust in AI, there are aspects of it that our work

does not cover. More research needs to be done, especially on how trust is initially

developed and changes overtime, and how trust relationships with AI vary between

stakeholder groups.

We highlight more important areas for future work. In our view, the overarching

goal of trust in AI research is to establish warranted and calibrated trust in AI, where

people’s trust in AI systems matches their actual trustworthiness. We see three steps

of research to achieving this goal. The first is to deepen the understanding of trust

in AI, e.g., what aspects there are to trust and what factors influence it. Our work

falls into this first step. The second is to understand how different factors influence

trust, likely with quantitative methods such as surveys and behavioral experiments.

We urge the field to move from studying one or a few factors in lab settings with

hypothetical end-users, to studying multiple factors in real-world settings with actual

end-users. This shift is necessary for understanding the interactions between factors,

as well as the contextual influences on trust. The third step is to design effective trust

calibration interventions, based on the gained insights on trust and its influencing

factors. We point to Wischnewski et al.’s work [413] for a survey of the state-of-the-

art trust calibration interventions and suggestions for future directions.

4.5.4 Practical recommendations

We conclude with a set of practical recommendations for future research on trust in

AI.
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1. State a definition of trust. Trust is a multifaceted construct that carries different

meanings to different people. Explicitly stating a definition of trust can help

remove confusion around the term and encourage accurate interpretation and

comparison of study results.

2. Examine if trust is the construct being studied. Oftentimes what’s being studied

is not trust, but other related constructs such as confidence and reliance. We

recommend that researchers carefully examine their study design and context to

ensure trust is the construct being analyzed. We hope our Section 4.4.1 serves

as a helpful example of such an examination.

3. Approach trust holistically and study its antecedents, context, and products. Our

contextually-grounded study of general trustworthiness perceptions and trust

attitudes, as well as instance-specific trust-related behaviors, revealed a compre-

hensive picture of end-users’ trust relationships with AI that cannot be gained

by studying only one aspect of trust. Hence, we recommend studying trust

together with its antecedents, context, and products, to the extent possible.

4. Consider human, AI, and context-related factors and their interactions. As

observed in this work, trust is influenced by many factors. To prevent surprises

and gain a thorough understanding of trust in a given context, we recommend

anticipating as many factors as possible and studying their interactions. We

found it particularly helpful to consider factors along the dimensions of human,

AI, and context.

4.6 Conclusion

We conducted a qualitative descriptive empirical study of end-users’ trust in AI in a

real-world context. We interviewed 20 end-users of a widely-used AI-based app for
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bird identification [368] and inquired about their trust in the app from many angles.

Using a process-oriented trust model [261], we elaborated on multiple aspects of trust

in AI. Notably, we found a discrepancy between participants’ general trustworthiness

perceptions and trust attitudes, and instance-specific trust-related behaviors, adding

nuances to existing understandings of trust in AI. We also identified human, AI, and

context-related factors of trust, finding that domain knowledge had a particularly big

influence on participants’ trust and interaction with AI. Finally, we discussed the im-

plications of our findings and provided recommendations for future research toward es-

tablishing warranted and calibrated trust in AI. We hope our work aids future research

on other AI applications and the various contexts into which they are integrated.
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Chapter 5

Examining the impact of large

language models’ uncertainty

expression on user reliance and

trust

Widely deployed large language models (LLMs) can produce convincing yet incor-

rect outputs, potentially misleading users who may rely on them as if they were

correct. To reduce such overreliance, there have been calls for LLMs to communi-

cate their uncertainty to end users. However, there has been little empirical work

examining how users perceive and act upon LLMs’ expressions of uncertainty. In

this chapter, we explore this question through a large-scale, pre-registered, human-

subject experiment (N=404) in which participants answer medical questions with or

without access to responses from a fictional LLM-infused search engine. Using both

behavioral and self-reported measures, we examine how different natural language

expressions of uncertainty impact participants’ reliance, trust, and overall task per-

formance. We find that first-person expressions (e.g., “I’m not sure, but...”) decrease
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participants’ confidence in the system and tendency to agree with the system’s an-

swers, while increasing participants’ accuracy. An exploratory analysis suggests that

this increase can be attributed to reduced (but not fully eliminated) overreliance on

incorrect answers. While we observe similar effects for uncertainty expressed from

a general perspective (e.g., “It’s not clear, but...”), these effects are weaker and not

statistically significant. Our findings suggest that using natural language expressions

of uncertainty may be an effective approach for reducing overreliance on LLMs, but

that the precise language used matters. This highlights the importance of user testing

before deploying LLMs at scale.

This chapter contains materials published in the FAccT 2024 paper, “I’m Not

Sure, But...”: Examining the Impact of Large Language Models’ Uncertainty Expres-

sion on User Reliance and Trust [193], in collaboration with Q. Vera Liao, Mihaela

Vorvoreanu, Stephanie Ballard, and Jennifer Wortman Vaughan.

5.1 Introduction

Large language models (LLMs) are transforming our daily lives. Today millions

of people already incorporate LLMs into everyday tasks like searching for informa-

tion [238, 265], writing [132, 427], and programming [10, 281, 315]. However, the use

of LLMs raises significant risks [35, 44, 405]. Notably, like all models, LLMs are im-

perfect. They are widely recognized to produce outputs that are fluent and plausible,

yet ultimately wrong [171, 173, 232]. This can lead to disastrous outcomes through

overreliance [58, 75, 304, 384], when people take actions based on incorrect outputs.

This concern garnered much public attention in 2023 when a lawyer included fake ju-

dicial opinions generated by ChatGPT in a legal brief presented in court [407]. Such

risks have been at the forefront of regulators’ minds when drafting new frameworks

for governing AI including the Draft AI Act in the European Union [303] and the
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NIST AI Risk Management Framework in the United States [362]. In fact, Article

14 of the Draft EU AI Act explicitly requires developing and evaluating approaches

to prevent overreliance on AI systems. However, overreliance is notoriously difficult

to mitigate, as many mitigations, such as explanations, are found to be ineffective or

even can backfire to increase overreliance [26, 304, 312, 400, 437].

As one approach to reduce overreliance, the research community has called for

LLMs and LLM-infused applications to express the uncertainty of outputs to end

users [22, 226, 231, 268, 385, 443]. The idea of conveying AI uncertainty is not

new; in AI-assisted decision-making settings, communicating (un)certainty has been

shown to support trust calibration [437], increase vigilance [313], and improve task

performance [26]. But because of their open-ended outputs, wide-ranging use cases

and user bases, and shifting public perception, LLMs raise new questions around

how to both estimate and express uncertainty [226, 385]. For estimation, “default”

approaches are often found to be overconfident [76, 268, 417], and a new line of work

has emerged on improving their calibration [13, 76, 86, 204, 231, 233, 268, 370, 443].

For expression, LLMs open up a new design space; instead of presenting uncertainty

numerically or visually, LLMs can present natural language expressions of uncer-

tainty — for instance, hedging phrases like “I’m not sure, but...” — embedded in

their outputs. Still, there is little understanding about how to effectively express

uncertainty in natural language to end users.

To deploy LLMs responsibly, it is necessary to understand how users react

to uncertainty expression before implementing approaches at scale since it may

have unintended negative consequences — potentially even increasing overreliance

if it causes the system to appear more trustworthy than it is. Best practices for

uncertainty expression will play a critical role in ensuring that requirements like

those in the Draft EU AI Act serve their intended purpose. To that end, we study

how people perceive and act upon an LLM’s expression of uncertainty when seeking
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medical information using a fictional LLM-infused search engine. We choose to study

this setting because search (unlike, for example, creative writing) is an application

in which the correctness of responses is fundamental — especially for potentially

high-stakes medical queries — making overreliance a serious concern. Additionally,

LLM-infused search engines are already used by millions of people.1

We choose to focus on natural language expressions for several reasons. First,

LLM-infused search engines already include hedging language [226, 238, 268]. Second,

social science research shows that, in human communication, expressing (un)certainty

through natural language is often preferred and perceived as more intuitive than

numerical expressions [95, 236, 392, 412, 448]. Third, this allows uncertainty to

be expressed seamlessly within the natural language interactions of LLM-infused

applications, rather than on the side or in onboarding materials [67, 274, 295] that

users might overlook.

Taking inspiration from the uncertainty communication literature — both in the

context of AI systems and person-to-person [292, 434] — we also explore the impact

of the perspective used to express the uncertainty, comparing expressions in the first

person (e.g., “I’m not sure, but...”) with expressions from a general perspective (e.g.,

“It’s not clear, but...”).

Concretely, we conduct a large-scale, pre-registered, human-subject experiment

(N=404) in which participants answer medical questions with or without access to

responses from a fictional LLM-infused search engine, referred to as “AI System A.”

We randomly vary whether participants have access to the system’s responses as well

as the presence (present/not present) and perspective (first-person/general) of uncer-

tainty expressed in these responses. We measure the impact of these experimental

conditions on factors including participants’ accuracy, the amount of time they take,

1In March 2023, Microsoft reported Copilot in Bing served 45 million chats in the first month
of its public preview [265]. Perplexity AI reported its service had reached 2 million monthly active
visitors in four months [9, 359].
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Figure 5.1: Screenshot of the information-seeking task (shown in theControl,
Uncertain1st, and UncertainGeneral conditions). Additional screenshots, in-
cluding the variant shown in the No-AI condition, can be found in the supp. mat.

their reliance on the system’s responses versus other sources of information, and their

self-reported trust in the system.

We find that participants who are shown first-person expressions of uncertainty

are less confident in the system’s answers, agree with the system’s answers less often,

and submit more correct answers compared with participants who see no expression

of uncertainty. An exploratory analysis suggests that the increased accuracy can be

attributed to reduced (but not fully eliminated) overreliance on the system’s incorrect

answers. While we observe similar effects for uncertainty expressed from a general

perspective, these effects are weaker and not statistically significant. These results

suggest that expressing uncertainty through natural language can be an effective

way to reduce overreliance and (over)trust in LLM-infused search engines. Still, we

advocate for teams building and deploying LLMs to evaluate approaches to mitigate

overreliance, including language choices, carefully with end users before release and

for policymakers to embrace diverse and flexible approaches.
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5.2 Related work

5.2.1 Uncertainty expression

Uncertainty expression has been studied extensively both in the context of AI and

in the context of human communication. Estimates of uncertainty can be expressed

in different ways, including numerically (e.g., “a probability of 0.2”), visually (e.g.,

displaying error bars), and through natural language (e.g., “with high uncertainty...”).

While numerical expressions and visualizations allow for high precision, they are

notoriously difficult for people to understand and are often misinterpreted, even by

experts [33, 155, 176, 360]. In contrast, while less precise, natural language expressions

of uncertainty are often perceived to be more intuitive and favored by people [95, 236,

392, 412, 448]. Because of this, and since LLMs already produce natural language

outputs, we focus on natural language expressions in our study.

Different forms of natural language uncertainty expression have been studied by

researchers in disciplines ranging from psychology [84, 390, 409] and human-computer

interaction [18, 121, 374] to communication [247] and marketing [104, 292]. Our study

design builds on this literature. Most notably, in the context of marketing, Oba and

Berger [292] found that different types of hedges — a form of uncertainty expression —

have different levels of persuasion, with the most persuasive being those that suggest

a high likelihood of occurrence (e.g., “probably” as opposed to “possibly”) and those

that take a personal, first-person perspective (e.g., “I feel like...”) as opposed to a

general perspective (e.g., “It feels like...”). Indeed, taking a first-person perspective

is often found to increase the engagement in the persuasion literature [73]. This

motivated our exploration of the effect of AI uncertainty expressions taking a first-

person or general perspective, though we explore the negative persuasive effect (i.e.,

deterring overreliance) of expressing uncertainty.
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Many methods have been proposed for estimating and communicating uncertainty

in AI systems [39]. Most relevant, several studies have shown that communicating

uncertainty can reduce overreliance. In the context of house valuation, Prabhudesai

et al. [313] found that visualizing a system’s uncertainty using quantile dot plots

forced participants to slow down and think analytically. In the context of sentiment

classification and question answering, Bansal et al. [26] found that displaying a

system’s numerical confidence improved participants’ task performance.

A few studies have looked specifically at natural language expressions of un-

certainty in AI systems. They have been studied in the chatbot literature as a

design strategy to prevent user frustration from conversational breakdowns [18, 121].

Radensky et al. [317] studied communicating the confidence of a conversational music

recommendation system through language and color coding. Experimenting with

different levels of calibration, they found that accurate confidence signals led to the

greatest increase in trust without encouraging overreliance, though underreliance may

still occur. Zhang et al. [434] explored different ways of having an AI system (named

“ShapeBot”) express confidence in the reasoning behind its recommendation, exam-

ining the effect of point of view (first-person “I think...” vs. third-person “ShapeBot

thinks...”) and strength of the belief expressed (“ShapeBot thinks...” vs. “ShapeBot

knows...”). They found that both factors affected user reliance, highlighting the

importance of carefully considering the language used to express (un)certainty.

5.2.2 Uncertainty in LLMs

Obtaining accurate numerical estimates of uncertainty for LLMs is an active line of

research. One way to estimate an LLM’s uncertainty is by the likelihood of generating

a specific output given the context. However, this “generation probability” may

not reflect what end users expect or want when they think of uncertainty [385]. A

more useful notion of uncertainty might be one that captures how likely it is that
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the LLM’s output is factually correct or correctly meets the user’s needs. This

notion of uncertainty may apply to a full output or to sentences, phrases, or words

within the output. Many researchers are working on evaluating how calibrated

existing uncertainty estimates are and proposing new techniques to improve calibra-

tion [13, 76, 86, 204, 231, 233, 268, 370, 443]. Current findings suggest that LLMs

are often overconfident [76, 268, 417], which may give a false impression of their

capabilities and exacerbate overreliance [96].

There is also a growing interest in LLMs’ ability to directly generate natural lan-

guage expressions of (un)certainty [231, 268, 417, 443]. Notably, Mielke et al. [268] ob-

served that LLMs regularly express confidence (e.g., “Obviously...”) and doubt (e.g.,

“I’m not sure, but...”) through the language used in their outputs, but these expres-

sions are poorly calibrated. Zhou et al. [443] “taught” OpenAI’s GPT-3 [55] model to

express (un)certainty through prompt engineering, but also found that the generated

expressions were not well calibrated, especially those suggesting high certainty.

Despite this active research, there has been little empirical work examining the im-

pact of uncertainty expression on users of LLM-infused systems. Notable exceptions

are the works of Vasconcelos et al. [385] and Spatharioti et al. [357], who explored

the effect of highlighting uncertain parts of LLM outputs in the context of code

completion and search, respectively, and the concurrent work of Zhou et al. [444],

who explored the effect of LLMs’ natural language expressions of (un)certainty in

the context of trivia question answering. These studies’ results support uncertainty

expression as a promising technique to encourage appropriate reliance, particularly

when uncertainty estimates are well calibrated. Our work adds empirical knowledge

on this topic through a large-scale, pre-registered experiment studying natural lan-

guage uncertainty expressions in the context of LLM-infused search.

To avoid making assumptions of calibration or tying our experiment to a partic-

ular uncertainty estimation approach, we design our study to include both instances
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in which the system expresses uncertainty when it is incorrect and instances in which

it expresses uncertainty when it is correct. By randomly varying whether or not

uncertainty is expressed on any particular response, we are able to directly compare

participants’ behavior when uncertainty is and is not expressed.

5.2.3 Measuring reliance and trust

We hypothesize that whether or not an AI system expresses uncertainty — and if it

does, the perspective in which the uncertainty is expressed — impacts user reliance

and trust. We note that there are many definitions, measures, and factors of reliance

and trust [78, 191, 379, 386, 436]. We use a combination of dependent variables and

a mix of behavioral and self-reported measures to capture aspects most relevant to

our research setting of LLM-infused search.

In the AI-assisted decision-making literature, many experiments follow the judge-

advisor paradigm [45], presenting a participant with an AI-generated answer to a ques-

tion and then asking the participant to provide their own answer, a set-up we adopt in

our work. In this set-up, agreement between a participant’s answer and that of the AI

system is a commonly studied behavioral measure of reliance and trust [58, 69, 212,

237, 250, 277, 424, 437]. While this does not capture reliance or trust directly — the

participant may have come up with the same answer on their own even without the AI

system— comparing how often participants agree with the AI system’s answers across

experimental conditions gives a way of measuring whether they rely on the system

differently across conditions. We use this measure in our work. We note that in some

prior work, the participant is asked to provide an initial answer first before seeing that

of the AI system [239, 240, 312, 335]. In these cases, other metrics like weight of advice

can be used to more directly capture reliance. We do not adopt this set-up because

we use questions we do not expect participants to be able to answer on their own.
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To complement agreement, we examine participants’ confidence, source usage,

trust intentions, and trust beliefs. First, as in prior work [69, 81, 190, 250, 312],

we ask participants to report their confidence both in the answer output by the

AI system and in their own answer. Second, as an indirect measure of reliance

and trust, we capture participants’ source usage by both tracking whether or not

participants click on the linked sources in the system’s responses and asking them

to self-report the resources that they based their final answer on. Finally, using

responses collected in an exit questionnaire, we measure participants’ trust intentions

and trust beliefs using the scales developed by McKnight et al. [145]. Trust intentions

refer to a participant’s desire to use the system, while trust beliefs refer to their

perceptions about the system’s trustworthiness such as the system’s perceived ability,

benevolence, and integrity [261]. In general, the two are positively related [145],

but Radensky et al. [317] found that they can be differently impacted by a system’s

expressed confidence. We measure both in our experiment to better understand the

impact of the system’s uncertainty expression.

We also measure two system facets that are known to impact trust: perceived

anthropomorphism and perceived transparency. Participants may view the expression

of uncertainty (especially first-person) as an inherently human behavior, leading

to increased anthropomorphism. Recent work has expressed concern around an-

thropomorphism leading to over-trust [3, 344], a potential path for uncertainty

expression to backfire. Uncertainty expression can also increase the system’s per-

ceived transparency [39], which is generally shown to enhance trust, whether or not

appropriate [226].

In addition to reliance and trust, we also consider task performance as a dependent

variable, measured as correctness of participants’ answers and time on task. Both of

these have been studied in prior work on AI-assisted decision making [215], as well

as specifically for studying the effect of uncertainty expression [384].
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We formally define the dependent variables in Section 5.3.2 and articulate hy-

potheses in Section 5.3.3.

5.3 Methods

As described in Section 5.2.3, our experiment is designed to measure the impact of

natural language expressions of an LLM’s uncertainty on user reliance and trust. We

do this in the context of information seeking in the medical domain. We pre-registered

our experimental design, hypotheses, analysis plan, and data collection procedures

before collecting data.2 To complement our pre-registered analyses, we include

exploratory analyses and a qualitative analysis of participants’ free-form responses.

The study was approved by our internal Institutional Review Board (IRB).

5.3.1 Procedure and experimental conditions

We designed a between-subjects experiment with some within-subjects comparisons,

which we conducted on Qualtrics. Participants complete a set of information-seeking

tasks. Each task involves determining the correct yes-or-no answer to a challenging,

factual question in the medical domain with or without access to responses from

a fictional LLM-infused search engine, “AI system A.” The presence and form of

system responses provided to participants depend on their experimental condition.

Specifically, participants are randomly placed into one of four experimental conditions:

• Control: Participants see AI responses without any expression of uncertainty.

• Uncertain1st: Participants see AI responses and half of the time these re-

sponses include uncertainty expressed in the first person, with personal pro-

nouns (e.g., “I’m not sure, but it seems...”).

2Our pre-registration is viewable at https://osf.io/mnrp9.
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• UncertainGeneral: Participants see AI responses and half of the time these

responses include uncertainty expressed in a general perspective, without per-

sonal pronouns (e.g., “There is uncertainty, but it seems...”).

• No-AI: Participants are not told about the AI system and do not see AI re-

sponses.

Control is a baseline to which we compare the conditions Uncertain1st and

UncertainGeneral to understand the impact of uncertainty expressions. No-AI

is a second baseline to understand the impact of access to the AI system.

The experiment is divided into three components. In the first, participants are

introduced to the study and to AI system A (if applicable). They are given several

task comprehension questions and are asked to complete an example task.

In the second component, participants answer a total of eight questions (de-

tails in Section 5.3.4). They are told they can use any resources they want as in

natural settings. For each question, participants, except for those in the No-AI

condition, are provided with responses from AI system A (Figure 5.1). The system’s

yes-or-no answers within their responses are correct for only half the questions. In

the Uncertain1st and UncertainGeneral conditions, the AI system expresses

uncertainty in its answers for half the questions — we refer to them as uncertain

answers versus not uncertain answers. We chose this breakdown to have sufficient

data for each of the four possible scenarios of correct/incorrect answers with/without

uncertainty expression. We randomize the order in which questions are presented, as

well as the set of questions for which the AI system expresses uncertainty. However,

since we based the AI system’s answers on real responses from Copilot in Bing (see

Section 5.3.4), the set of answers and their correctness are fixed.

In the final component, participants fill out an exit questionnaire about their

experience with and perception of the AI system (if applicable), their background on

LLMs, and basic demographic information; see the supp. mat. Lastly, participants
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are debriefed and reminded that some of the AI responses they saw may have

contained inaccurate information.

5.3.2 Dependent variables

We now formally define the dependent variables (DVs) that we measured, motivated

in Section 5.2.3. First, for each of the eight questions, we measured the following DVs

based on participants’ observed behavior:

• Agree: TRUE if the participant’s final answer is the same as the AI system’s

answer; FALSE otherwise.

• Correct: TRUE if the participant’s final answer is correct; FALSE otherwise.

• Time: Number of minutes from when the participant saw the task to when they

clicked next.

• LinkClick: TRUE if the participant clicks on one or more links in the system’s

answer; FALSE otherwise.

We additionally measured the following DVs based on participants’ self-reported

ratings:

• UseAI: TRUE if the participant selected “AI system A’s answer” in the question

“What is your final answer based on? (Select all that apply)”; FALSE otherwise.

• UseLink: TRUE if they selected “Your own reading of the linked sources in AI

system A’s answer” in the above question; FALSE otherwise.

• UseInternet: TRUE if they selected “Your own Internet search” in the above

question.; FALSE otherwise.

• ConfidenceAI: Rating on the question “How confident are you in AI system

A’s answer?” on a 5-point scale.
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• ConfidenceAnswer: Rating on the question “How confident are you in your

final answer?” on a 5-point scale.

Finally, based on responses to the exit questionnaire, we calculated the following

indexes (all on a 5-point scale):

• TrustBelief: Average rating on six statements adapted from the trust scale

by McKnight et al. [145].

• TrustIntention: Average rating on four statements adapted from the trust

scale by McKnight et al. [145].

• Anthropomorphism: Average rating on four items from the Godspeed Question-

naire Series [28].

• Transparency: Average rating on two statements: “I feel I had a good under-

standing of what AI system A’s answers were based on” and “I feel I had a

good understanding of when AI system A’s answers might be wrong.”

Full details are in the supp. mat. Note that some DVs were not applicable for

the No-AI condition, where we measured only Agree, Correct, Time, UseInternet,

and ConfidenceAnswer. Here we made one (and only one) minor deviation from our

pre-registration by including Agree. Although participants in this condition do not

see the AI system’s answers, this gives us a baseline for how often participants would

arrive at the same answer on their own.

5.3.3 Hypothesis and analysis

We expected the presence and perspective of uncertainty expression to impact par-

ticipants’ reliance, trust, and performance. Formally, for each DV, we hypothesized

that condition affects DV. For each repeatedly measured DV, we additionally hy-

pothesized that whether or not uncertainty was expressed in a particular AI response
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affects DV. We tested our hypotheses with the following pre-registered, confirmatory

analyses, for which we present results in Section 5.4.

We first test the main effect of the conditions with a between-condition

analysis. For repeatedly measured DVs, we fit the model DV ∼ Condition

+ (1|participant) + (1|question) with Control as the reference level for

Condition. Then to compare the effects of the two conditions with uncertainty,

we used a Wald test to test the equality of the corresponding coefficients. For DVs

measured once in the exit questionnaire, we use analysis of variance (ANOVA) to

compare means across the conditions. If significant, we conduct pairwise comparisons

with a post-hoc Tukey test.

Next, we test the effect of uncertainty being expressed or not in a particular

response with a within-condition analysis for conditions with uncertainty ex-

pression. For repeatedly measured DVs, we fit the model DV ∼ AIUncertain +

(1|participant) + (1|question), where AIUncertain is TRUE if the AI re-

sponse is uncertain and FALSE otherwise. We fit this model once for data from the

Uncertain1st condition and once for data from UncertainGeneral.

We complement the confirmatory analyses with two additional analyses. First, we

conduct an exploratory analysis of the effect of AI’s uncertainty expression on over-

and underreliance by separately analyzing cases where the AI system gave correct

versus incorrect answers. Analysis details and results are presented in Section 5.5.1.

Second, we conduct a thematic analysis [48, 51] of free-form responses from partic-

ipants in the Uncertain1st and UncertainGeneral conditions describing their

experience with and perception of the AI system. The first author drafted the code-

book and conducted the initial coding, then discussed the results with all authors and

refined the coding together. We describe how the AI system’s uncertainty expression

affected participants in Section 5.4 along with the quantitative results, and describe

how participants interpreted the system’s uncertainty expression in Section 5.5.2.
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5.3.4 Questions and AI responses used

We selected a set of factual questions for participants to answer according to the

following criteria: (1) most lay people should not know the answer; (2) the question

and answer should not directly show up when using popular search engines; and (3)

the answer can be objectively and automatically assessed. To satisfy the criteria,

we constructed a set of yes/no medical questions. We began with questions from

the MedQuAD dataset [34] and made minor modifications to some to increase the

difficulty of finding an answer. We verified that each question does not show up as it

is and can not be immediately answered using popular search engines, and consulted

multiple sources to confirm the correct answer.

To create AI responses that are realistic and reflect the state-of-the-art in LLM-

infused search, we input the selected questions into Microsoft’s Copilot in Bing. All

responses were obtained in July 2023. To keep the fluency, style, and content of

responses as realistic as possible, we made only minor modifications such as present-

ing in-line citations using square brackets instead of superscripts (see Figure 5.1) and

starting each response with “Yes” or “No” for consistency (most responses from Copi-

lot in Bing did this already). We did not make substantive changes to the content.

To create the uncertain versions of the responses, we drew on Oba and Berger

[292]. For Uncertain1st, we replaced the leading “Yes” or “No” with an expression

of the form “I’m not {certain, sure}, but {it seems to me, it seems like, I would

guess, I’d guess that},” selecting one phrase from each set of brackets. Similarly, for

UncertainGeneral, we used an expression of the form “{It’s unclear, It’s not clear,

There is uncertainty}, but it seems like.” Current LLMs already output expressions

such as “I’m not sure, but” and “I’m not sure, but my guess is” [268], so we believe

these insertions preserve the realisticness of responses. The only difference between

the three versions of the AI system’s responses is the presence and perspective of

uncertainty expression; their information content is otherwise identical.
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Table 5.1: Between-condition analysis. We compare DVs across conditions.
We report the model-estimated means (and standard errors) from our confirmatory
analysis. The rightmost column shows pairs of conditions with statistically significant
differences with significance marked as ∗ (p < 0.05) or ∗∗ (p < 0.01).

†Note that we did not compare all possible pairs of conditions (see Section 5.3.3). For
repeatedly measured DVs, we compared (Control vs. Uncertain1st/UncertainGeneral/No-
AI) and (Uncertain1st vs. UncertainGeneral) but not (No-AI vs. Uncer-
tain1st/UncertainGeneral) to reduce the number of hypothesis testing. For DVs measured
once in the exit questionnaire, we first compared the means of (Control, Uncertain1st,
UncertainGeneral) using ANOVA, then if significant, conducted pairwise comparisons.

Sec. DV Control Uncertain1st UncertainGeneral No-AI Significant differences†

5.4.1 Agree (%) 80.9% (5.5) 74.8% (6.7) 77.6% (6.2) 58.4% (8.5)
No-AI <∗∗ Control

Uncertain1st <∗ Control

5.4.2
ConfidenceAI (1-5) 3.95 (0.17) 3.66 (0.17) 3.80 (0.17) Uncertain1st <∗∗ Control

ConfidenceAnswer (1-5) 4.30 (0.08) 4.34 (0.08) 4.27 (0.08) 4.22 (0.08)

5.4.3

LinkClick (%) 2.7% (2.1) 7.2% (4.8) 3.9% (3.1)

UseAI (%) 77.3% (5.1) 64.8% (6.9) 72.3% (6.0)

UseLink (%) 74.7% (5.5) 85.5% (4.0) 81.7% (4.8)

UseInternet (%) 19.1% (5.6) 27.0% (7.4) 23.2% (6.7) 92.9% (2.5) Control <∗∗ No-AI

5.4.4

TrustBelief (1-5) 3.90 (0.06) 3.86 (0.07) 4.00 (0.07)

TrustIntention (1-5) 3.25 (0.10) 2.91 (0.10) 3.36 (0.10)
Uncertain1st <∗ Control

<∗ UncertainGeneral

Anthropomorphism (1-5) 3.07 (0.10) 3.00 (0.11) 3.13 (0.11)

Transparency (1-5) 4.04 (0.06) 3.93 (0.07) 4.01 (0.07)

5.4.5
Correct (%) 63.9% (8.6) 72.8% (7.4) 67.9% (8.1) 74.2% (7.1)

Control <∗∗ Uncertain1st
Control <∗∗ No-AI

Time (min) 2.13 (0.22) 2.10 (0.23) 2.03 (0.22) 1.57 (0.21) No-AI <∗ Control

We selected the final eight questions such that: (1) four questions have a correct

answer of “Yes” and four have a correct answer of “No” so that always selecting

“Yes” is no better or worse than random guessing; (2) the AI answers are correct for

four and incorrect for four, so that always agreeing with the AI system is no better

or worse than random guessing; (3) questions are not too easy to answer without

access to the AI system (determined via piloting). The final set of questions used is

provided in the supp. mat. along with the original responses from Copilot in Bing

and our modified responses.
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5.3.5 Data collection and participants

We conducted our experiment on Amazon Mechanical Turk (MTurk), a crowdsourc-

ing platform widely used for human-subject experiments. Research has shown data

from MTurk workers is comparable to data from other pools (e.g., commercial panels,

social media, colleges) [37, 61, 71, 89, 260, 301], but recently there has been a decrease

in data quality [80, 185, 249, 259, 387, 403]. Indeed, in pilot studies we found that

a strong requirement on qualification was necessary to obtain meaningful data, with

the highest quality data obtained when requiring a “Masters” qualification (granted

by Amazon based on past performance). Since the pool of available participants

with a Masters qualification is limited, we pre-registered a recruitment plan in which

we would initially aim to recruit 432 (determined via a power analysis) U.S.-based

MTurk workers with a Masters qualification, 99% or higher approval rating, and

at least 2000 completed human intelligence tasks (HITs), removing the Masters

requirement after 7 days if we were unable to meet our target sample size. In

parallel, we implemented best practices to mitigate the use of bots and improve data

quality, including CAPTCHAs, honeypot questions, speed checks, attention checks,

and open-ended questions, which we used to define data exclusions.

We collected 656 complete responses over the course of two weeks in September

2023, of which we excluded 252 (38.4%) based on five pre-registered exclusion criteria.

Our final sample consists of 404 responses: 104 in Control, 92 in Uncertain1st,

94 in UncertainGeneral, and 114 in No-AI. See the supp. mat. for more on our

data collection procedures.

Participants were paid $5 USD. The payment was determined based on the ex-

pected experiment duration of 20 minutes (estimated from pilot studies) and target

hourly wage of $15. The actual median experiment duration was 20.5 minutes, so

on average, participants were paid $14.80 per hour. See the supp. mat. for more

information about participants.
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5.4 Results: Confirmatory analysis

We now present the results of our pre-registered, confirmatory analyses. Tables 5.1

and 5.2 contain the between-condition and within-condition analysis results, respec-

tively. We refer the reader to Section 5.3.2 for definitions of all DVs. We present the

estimated means (and standard errors) from the fitted models, calculated without

conditioning on the random effects, and represent binary variables in percentages.

We use significance to refer to statistical significance at the level of p < 0.05.

5.4.1 Agreement with AI

We begin with the results of agreement, a commonly used behavioral measure of

reliance and trust. Our first finding is that people tend to agree with the AI

system when its responses are provided. Our between-condition analysis sug-

gests that participants with access to the AI system are significantly more likely to

submit the same answer as the system than those who do not have access (80.9%

Control vs. 58.4% No-AI). We next find that AI’s uncertainty expression de-

creases agreement with the AI system. Compared to Control (80.9%), Agree

is significantly lower in Uncertain1st (74.8%). It is also lower in Uncertain-

General (77.6%), although the difference is not significant. Our within-condition

analysis suggests AI’s uncertainty expression decreases agreement at the instance level

as well. The estimated means of Agree for not uncertain vs. uncertain AI responses

are 84.7% vs. 70.9% for UncertainGeneral (significantly different) and 79.5%

vs. 73.4% for Uncertain1st (not significantly different). We find support for this

finding in the qualitative data as well. 10 participants (out of 186 in Uncertain1st

and UncertainGeneral) stated that when they disagreed with the system it was,

as one put it, “because of the uncertainty of the answers provided by AI.”
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Other reasons participants mentioned for disagreement included the system’s

answer being different from their own knowledge (e.g., “A couple of the AI’s answers

didn’t make sense so from my own common sense I had to make my own judgement”)

or the information in other resources (e.g., “The answer seemed to contradict the

links given, or I could not find how they came to that answer with the information

from the links given”) and having lower trust in the system.

5.4.2 Confidence in answers

Looking at participants’ self-reported confidence in answers, we find that AI’s un-

certainty expression decreases people’s confidence in its answer. Compared

to Control (3.95 on a 5-point scale), ConfidenceAI is significantly lower in Un-

certain1st (3.66). It is also lower in UncertainGeneral (3.80), although the

difference is not significant. Our within-condition analysis provides further evidence

for this finding and suggests that AI’s uncertainty expression decreases people’

confidence in their final answer at the instance level. For bothUncertain1st

and UncertainGeneral, ConfidenceAI and ConfidenceAnswer are significantly

lower on instances with uncertain (vs. not uncertain) AI responses. Indeed, one

participant in the Uncertain1st condition stated, “If the AI didn’t seem confident,

I would like [sic] on the links. If the AI seemed confident I assumed he was correct

most of the time.”

5.4.3 Source usage

Looking at source usage, we find that people with access to the AI system con-

duct their own Internet search less frequently than those without access.

UseInternet is notably lower in Control (19.1%) than No-AI (92.9%). However,

we see no significant differences in source usage between the three conditions in which

AI responses are present, meaning there is no evidence that the presence and
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Table 5.2: Within-condition analysis. For each of the two conditions with
uncertainty, we compare DVs measured on instances with AI answers that are not
uncertain vs. uncertain. We report the model-estimated means (and standard errors)
from our confirmatory analysis. > and < note statistically significant differences
with significance marked as ∗ (p < 0.05) or ∗∗ (p < 0.01).

†The model does not fit properly due to large individual variance which we discuss in an
exploratory analysis in Appendix C.1.

Sec. DV
Uncertain1st UncertainGeneral

Not Uncertain Uncertain Not Uncertain Uncertain
5.4.1 Agree (%) 79.5% (7.2) 73.4% (8.6) 84.7% (5.0) >∗∗ 70.9% (7.8)

5.4.2
ConfidenceAI (1-5) 3.88 (0.20) >∗∗ 3.44 (0.20) 3.95 (0.16) >∗∗ 3.65 (0.16)

ConfidenceAnswer (1-5) 4.42 (0.09) >∗∗ 4.26 (0.09) 4.36 (0.07) >∗∗ 4.18 (0.07)

5.4.3

LinkClick (%) 14.3% (6.9) 9.9% (5.1) See table caption†

UseAI (%) 73.2% (7.2) >∗∗ 57.4% (8.9) 79.7% (4.7) >∗∗ 62.9% (6.5)
UseLink (%) 86.5% (4.2) 84.3% (4.7) See table caption†

UseInternet (%) 23.0% (6.3) <∗∗ 34.1% (7.8) 19.2% (6.5) 26.9% (8.1)

5.4.5
Correct (%) 73.6% (8.9) 75.7% (8.4) 69.4% (10.1) 70.3% (9.9)
Time (min) 2.00 (0.29) 2.19 (0.29) 1.84 (0.25) <∗ 2.23 (0.25)

perspective of AI’s uncertainty expression affect people’s source usage

behavior. On the other hand, from our within-condition analysis, we find that AI’s

uncertainty expression has a significant effect on the self-reported DVs at the in-

stance level. On instances with uncertain AI responses (vs. not uncertain responses),

UseAI is significantly lower in both Uncertain1st and UncertainGeneral, and

UseInternet is significantly higher in Uncertain1st. These results suggest that

at the instance level, AI’s uncertainty expression decreases the use of the

system’s answer and increases the use of other resources. In their free-form

responses, 11 participants stated that the system’s uncertainty motivated them to

verify information using the links provided in the answer (e.g., “I clicked on the

links provided when the AI was uncertain of the answers”) while 13 mentioned it

motivated them to perform their own search (e.g., “When the AI wasn’t certain, I

searched on Google”).

We note that both LinkClick and UseLink are intended to capture whether or

not participants read the linked sources provided in the AI system’s responses, but the

estimated means of LinkClick (2.7% – 7.2%) from the between-condition analysis are

much lower than those of UseLink (74.7% — 85.5%). There are several factors that
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might contribute to this discrepancy. First, these estimated means are from different

models that include participants and questions as random effects. The intercepts for

random effects in these models are quite high. Looking at the raw data, there is still a

gap, but not as large: the actual means are 30.6% – 34.9% for LinkClick and 64.2%

– 71.6% for UseLink. Second, there could have been measurement error from self-

report bias for UseLink [98]. Finally, some participants could have considered their

answers to be based on their “own reading of the linked sources” if they read the list

of links, even if they didn’t click to open them. For example, one participant wrote,

“If the link title gave the same answer as the AI answer, then I assumed it was the

right answer.” This discrepancy emphasizes the value of including both behavioral

and self-reported measures.

5.4.4 Trust and perception of AI

Moving onto trust and perception of AI, we find that the presence and perspec-

tive of uncertainty expression neither affect people’s trust beliefs nor the

perceived anthropomorphism and transparency of the system. There are no

significant differences in TrustBelief, Anthropomorphism, and Transparency be-

tween Control and the two conditions with uncertainty. Overall, participants had

somewhat positive trust beliefs about the system (TrustBelief is around “4:

Somewhat agree” for all conditions); reported that they had a somewhat good un-

derstanding of what the AI system’s answers were based on and when they

might be wrong (Transparency is around “4: Somewhat agree”); and had neutral

perceptions of anthropomorphism (Anthropomorphism is around “3: Neutral”).

In contrast, we find that first-person expressions of uncertainty decrease

trust intentions while expressions from a general perspective do not.

TrustIntention is significantly lower in Uncertain1st (2.91) compared to both

Control (3.25) and UncertainGeneral (3.36), indicating a lower desire to use
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the system. Illustrative of this, one participant in the Uncertain1st condition

stated, “[The AI system] was very non-committal in its answers so I didn’t feel I

could trust it.” This suggests that frequent first-person expressions of uncertainty

can lead people to view the system as less trustworthy and decrease their desire to

use it. More about the used scales and item-level results is in the supp. mat.

5.4.5 Task performance

Finally, we analyze participants’ task performance. From our between-condition

analysis of Correct, we first find that having access to the AI system decreases

people’s accuracy. Participants with access to the system have significantly lower

accuracy than those without (63.9% Control vs. 74.2% No-AI). However, this

result should be interpreted in the context of the AI system’s low overall accu-

racy (50.0% in our experimental setup). Second, we find that AI’s uncertainty

expression increases people’s accuracy. Correct is significantly higher in

Uncertain1st (72.8%) than Control (63.9%). It is also higher in Uncertain-

General (67.9%), but the difference is not significant.

From our between-condition analysis of Time, we find that having access to the

AI system increases task time. Time is significantly higher in Control (2.13

min) than No-AI (1.57 min). Together with the results on correctness, this sug-

gests that having access to the AI system decreases overall performance in

our experimental setup. Between Control and the two conditions with uncer-

tainty, there are no significant differences in task time. However, our within-condition

analysis suggests that AI’s uncertainty expression increases task time at the

instance level. The estimated means of Time for not uncertain vs. uncertain AI

responses are 1.84 min vs. 2.23 min for UncertainGeneral (significantly differ-

ent) and 2.00 min vs. 2.19 min for Uncertain1st (not significantly different). An
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(a) Between-condition analysis results. (b) Within-condition analysis results.

Figure 5.2: Exploratory analysis of over- and underreliance (Section 5.5.1).
We analyze Correct (%) separately for questions the system answered correctly vs.
incorrectly. We show the model-estimated means and standard errors for each con-
dition (Figure 5.2a) and for not uncertain vs. uncertain responses in the conditions
with uncertainty (Figure 5.2b).

explanation of this result is that AI’s uncertainty expression slows people down to

use more caution when completing the task.

5.5 Results: Additional analyses

5.5.1 Effect of uncertainty expression on over- and underre-

liance

In Section 5.4.1, we analyzed participants’ agreement with the AI system as a mea-

sure of reliance. Agreement can be appropriate or inappropriate, depending on the

correctness of the AI system’s answers; agreeing with the system when it is incorrect

is a sign of overreliance, whereas disagreeing with it when it is correct is a sign of

underreliance. To better understand the extent to which uncertainty expression leads

to either of these phenomena, we take inspiration from the analysis of Chen et al. [75]

and separately analyze participants’ agreement on questions the AI system answers

correctly and questions it answers incorrectly. Note that, having conditioned on the

(in)correctness of the AI system, analyzing agreement is equivalent to analyzing cor-

rectness of people’s final answers. We present the results here in terms of correctness
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to focus attention on whether reliance is appropriate (i.e., beneficial to the user) or

not.

Concretely, we run similar analyses to those presented in Section 5.4.5, but fit

the regression models once on data from the four questions the system answered

correctly and once on data from the four questions the system answered incorrectly

(see Section 5.3.4). We show the estimated means (and standard errors) from these

models in Figure 5.2.

First, by comparing the Control and No-AI conditions, we observe that having

access to the AI system’s answer increases accuracy when the system is correct (the

estimated mean of Correct is 88.5% in Control vs. 77.9% in No-AI), but de-

creases accuracy when it is incorrect (33.0% in Control vs. 64.7% in No-AI), as in

Figure 5.2a. Comparing Control with Uncertain1st and UncertainGeneral,

we see that having the AI system express uncertainty improves accuracy on questions

that the system answers incorrectly without reducing accuracy when the system is

correct. In line with our earlier results, expressing uncertainty in the first-person per-

spective leads to a bigger improvement in accuracy when the AI system is incorrect

compared with expressing uncertainty in the general perspective.

To better understand how expressions of uncertainty drive accuracy, we break

down the results further, comparing task accuracy on questions for which the sys-

tem expresses uncertainty and those for which it does not (Figure 5.2b). We find

that expressing uncertainty about a particular question leads to some reduction in

accuracy when the AI system is correct (92.2% to 89.2% for Uncertain1st, 94.8%

to 83.1% for UncertainGeneral), but a greater increase in accuracy when the

AI system is incorrect (43.6% to 52.0% for Uncertain1st, 32.8% to 48.0% for

UncertainGeneral).

While these results provide some evidence that expressions of uncertainty help

reduce overreliance, we note that participants in the Uncertain1st and Uncer-
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tainGeneral conditions still have substantially lower accuracy on questions where

the AI system is incorrect compared with participants in the No-AI condition.

5.5.2 Participants’ interpretations of AI’s uncertainty ex-

pression

While our quantitative results shed light on whether expressions of uncertainty

impact reliance and trust, they cannot tell us why. We next explore participants’

interpretations of the expressed uncertainty via a thematic analysis of free-form

responses to the question “When and why do you think AI system A expresses

uncertainty?” in the exit questionnaire.

The majority of participants (N=102 of the 186 in the conditions with uncer-

tainty) attributed the system’s expressed uncertainty to its inability to answer a

particular question, for example because it could not find an answer, found conflict-

ing or unreliable answers, or could not understand the information it found. Three

suggested the system was programmed to express uncertainty, as in “I would guess

there’s some sort of certainty variable and if the score is below a level, an uncertainty

message is included in the result.” Another ten suggested the expressed uncertainty

is due to the inherent difficulty of the question. As one put it, “It could be a question

that is very hard to come up with a simple yes or no answer.”

These interpretations are all in line with the goal of reducing overreliance: if

the system is unable to answer a question or the question is inherently difficult,

users should verify the answer for themselves. Five participants explicitly interpreted

the expressed uncertainty as a way of encouraging users to check their answers, for

example, “I suppose the AI wanted us to do further research in those cases where it

could not be 100% sure of the answer.”

A small number of participants attributed the uncertainty to other reasons, such

as impression management (“to appear more human, encourage confidence, and

150



appear thoughtful”), maintaining credibility (“It doesn’t want to risk being wrong on

something and ruining it’s credibility”), avoiding liability (“it expresses uncertainty

to absolve it of responsibility in the event it is wrong”), or restrictions on answering

medical questions (“the AI is programmed not to dispense medical advice which could

potentially be harmful without a caveat”). These interpretations may not necessarily

reduce overreliance.

One might ask whether participants interpreted the two types of uncertainty ex-

pression differently. Indeed, we found that participants in the UncertainGeneral

condition were more likely than those in Uncertain1st (51.5% vs. 41.3%) to at-

tribute the uncertainty to the AI system finding conflicting or unreliable information

or the question being inherently hard, whereas those in Uncertain1st were more

likely (20.7% vs. 7.4%) to attribute it to limitations of the AI system itself.

5.6 Discussion

Our results suggest that expressing uncertainty through natural language can be an

effective way to reduce overreliance and (over)trust in LLM-infused search engines.

Expressions of uncertainty led to more cautious behaviors, from taking longer to

arrive at an answer to reporting more reliance on outside sources. However, it did

not fully eliminate overreliance; the participants with the highest task performance

were those without access to AI responses.

We find that perspective matters: uncertainty expressions in first-person show

stronger effects than general perspective. This is consistent with prior findings that

first-person messages increase recipients’ involvement and engagement [73, 434] com-

pared with general or third-person messages. This persuasive effect of first-person

expressions should be interpreted with caution: while it helps heighten the warning

effect of a negative message such as uncertainty, it might amplify a positive message,
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even if unjustified. For example, one may want to avoid first-person expressions

of confidence because they may exacerbate overreliance and over-trust, as found in

prior work [444]. There are also concerns around harms from anthropomorphism of

AI systems that may stem from over-trust, deception, threats to human agency, and

propagation of stereotypes [3]. While we did not observe that first-person uncertainty

expression increases perceived anthropomorphism, people can start assigning social

attributes to machines without conscious awareness [283]. Future research and

practices should further explore the long-term effects of interacting with AI systems

expressing uncertainty in a first-person perspective and consider other potential

negative effects of anthropomorphism.

Our research has implications both for those building and deploying LLMs and

LLM-infused applications and for policymakers regulating the use of AI. Most crit-

ically, any approach to reducing overreliance should be validated through empirical

research. There may also be tradeoffs when balancing over- and underreliance.

In our study, the most successful approach to reducing overreliance was to use

first-person uncertainty expression, but this also decreased participant trust in the

AI system, which may be undesirable in settings where people already under-trust

the AI system. We believe there is no one-size-fits-all approach to implementing

natural language uncertainty expression. For these reasons, given that the issue of

how to manage overreliance is of particular importance to regulators, we advocate for

raising awareness of the complexities of mitigating overreliance and for customized,

evidence-based solutions, rather that universal ones.

There are limitations to our research. The widespread deployment of LLMs is still

relatively new and the human-computer interaction and broader research communities

are still grappling with the question of how to design effective studies to understand

how end users perceive and interact with them. There is always a tradeoff between

the controllability of the experiment and the generalizability of the conclusions to
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user behaviors in their day-to-day tasks [263]. In order to be able to measure agree-

ment and correctness, we adopted an experimental set-up inspired by the AI-assisted

decision-making literature in which study participants provide simple yes/no answers

to questions. This approach does not allow exploring how the expression of uncer-

tainty would impact people’s behavior when completing more complex tasks, like

writing an article or planning a trip. Further, our measurements of time and source

usage are less reliable than they would have been had we opted for an in-person lab

study. We chose questions from the medical domain, where overreliance is particu-

larly concerning, but people may behave differently when seeking information about

their own medical symptoms rather than answering a pre-defined set of questions.

People may also behave differently when given the chance to interact with the system

repeatedly as opposed to in a single session. The AI system in our study exhibited

low accuracy and expressed uncertainty often, in a poorly calibrated manner. These

design choices may have impacted our results — particularly the lower task perfor-

mance when given access to the AI system. Also, there may be differences across

cultures and languages in how people interpret or react to uncertainty. Our study

was conducted in English with U.S.-based participants and results may not generalize

to other cultural and linguistic contexts.

For all of these reasons, while our findings suggest that natural language expres-

sions of uncertainty could be an effective approach to reducing overreliance, we caution

against overgeneralizing from our study. Instead, we view our results as evidence that

language choices matter in how people perceive and act on the outputs of LLMs, and

teams building and deploying LLMs should therefore evaluate them carefully with

end users before release.
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5.7 Ethical considerations and positionality

We conclude with a reflection on the ethical considerations of our work and our

positionality.

Mitigating harms to human subjects. We recruited U.S.-based participants on

MTurk, which many people rely on as a primary source of income. As discussed

in Section 5.3.5, we aimed to provide an hourly wage of $15 USD. We came close

to this goal, with participants receiving an estimated $14.80 per hour on average.

(This is likely an underestimate of average wage, since we have no way to know if

workers spent time on other activities between accepting the task and completing

it.) This is substantially higher than the U.S. federal minimum wage of $7.25 per

hour, though a few states have recently adopted a minimum wage of $15/hour or

higher. As discussed in the FAccT 2023 panel “The Humans Behind the Intelligence:

Speaking with Data Workers,” our choice to limit participation to workers with a

99% or higher approval rating, at least 2000 completed tasks, and in some cases, a

Masters qualification, prevented workers who are new to MTurk from participating.

We made the decision to include these qualifications after piloting several versions

of the study with less restrictive qualifications and finding that the data quality

was too poor to use. We paid and approved the work of everyone who completed

the study, regardless of whether their responses passed our quality checks. At

the end of the study, we debriefed participants, reminding them that the medical

information output by the AI system was sometimes incorrect. We did not collect

personally identifiable information except for MTurk IDs, which were used to ensure

that workers who participated in pilots of our study did not participate in the main

study. These were deleted when no longer needed. Our procedure was reviewed and

approved by our internal IRB and we obtained participant consent.
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Potential negative societal impact. While our results provide evidence for the

effectiveness of natural language expressions of uncertainty for reducing overreliance,

generalizing too heavily from our findings could lead to potential harms. Given the

limitations of our research (see Section 5.6), teams deploying LLMs or LLM-infused

applications should not make decisions about how to express uncertainty to end users

without extensive user testing in their own contexts. They also should not assume

that they have addressed overreliance by expressing uncertainty. (Indeed, in our

study we see that participants still have higher task performance with no access to

the AI system.) Likewise, regulators should avoid making blanket requirements on

uncertainty expression, at least until more research has been done.

Separate from these potential unintentional misuses of our research, there is a pos-

sibility that bad actors could strategically incorporate the expression of uncertainty

into an LLM’s output to make them more persuasive, regardless of whether they

represent objective fact, potentially contributing to the spread of misinformation.

Positionality. Our research questions and design were influenced by our position

as employees of a U.S.-based technology company. Members of our research team

have first-hand experience observing and participating in discussions regarding

the responsible development and deployment of LLM-infused applications, which

has shaped our understanding of gaps in knowledge and other practical challenges

that arise in attempting to meet responsible AI principles and proposed regulatory

requirements. We had access to sufficient budget to run large-scale experiments,

which is not an option for some research teams. Our view that there are potential

benefits of responsibly deployed LLM-infused applications is likely influenced by our

experience in industry, yet we acknowledge some fundamental limitations of using

155



LLMs for information retrieval [341]. We encourage future research on overreliance

from research teams in academia and civil society.
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Chapter 6

Fostering appropriate reliance on

large language models

Large language models (LLMs) can produce erroneous responses that sound fluent

and convincing, raising the risk that users will rely on these responses as if they

were correct. In this chapter, we present two studies aimed to foster appropriate

user reliance on LLMs. Through a think-aloud study in which participants use an

LLM-infused application to answer objective questions, we identify several features

of LLM responses that shape users’ reliance: explanations (supporting details for

answers), inconsistencies in explanations, and sources. Through a large-scale, pre-

registered, controlled experiment (N=308), we isolate and study the effects of these

features on users’ reliance, accuracy, and other measures. We find that the presence

of explanations increases reliance on both correct and incorrect responses. However,

we observe less reliance on incorrect responses when sources are provided or when

explanations exhibit inconsistencies. We discuss the implications of these findings for

fostering appropriate reliance on LLMs.

This chapter contains materials published in the CHI 2025 paper, Fostering Ap-

propriate Reliance on Large Language Models: The Role of Explanations, Sources,
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and Inconsistencies [194], in collaboration with Jennifer Wortman Vaughan, Q. Vera

Liao, Tania Lombrozo, and Olga Russakovsky.

6.1 Introduction

Large language models (LLMs) are powerful tools, capable of a wide range of tasks

from text summarization to sentence completion to code generation. Technology

companies have leapt at the unprecedented opportunity to build LLM-infused appli-

cations that help users with information retrieval and search, learning new things,

and performing everyday tasks more efficiently. Many such applications, such as

LLM-infused search engines and chatbots, are predicated on LLMs’ ability to pro-

vide intricate responses to complex user questions. Already millions of people use

LLMs to find answers to their questions about health, science, current events, and

other domains, and the use of LLMs is widely predicted to grow [179, 343, 446].

However, the responses produced by LLMs are often inaccurate, sometimes in sub-

tle ways [92, 171, 331, 348]. While such overreliance on AI systems is not a new

problem [26, 304, 312, 400, 437], it may be exacerbated by the introduction of LLMs,

since LLM responses are often fluent and convincing even when wrong and public

excitement around LLMs is high.

When asked to answer a question, LLMs and systems based on them typically

provide a response that contains both an answer to the question and some supporting

details or justification for this answer [222, 418]. For example, when asked a math

question, an LLM may provide a step-by-step derivation for its answer [87, 149]. In

line with everyday usage and much of the psychology literature [183, 241, 245], we refer

to such supporting details as an explanation of the answer. (We note that this differs

from how the term explanation is often used within the explainable AI community in

that we do not make any assumptions about the extent to which it faithfully describes
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the way that the model arrived at its answer. That is, the explanation describes why

the answer is correct, not necessarily why the model output the answer that it did.)

Some authors have argued that such explanations should help users spot incorrect

answers, potentially mitigating overreliance [62, 137, 212, 384]. However, prior work

suggests that in many settings, the very presence of an explanation can increase trust

and reliance, whether or not it is warranted [26, 120, 299, 312, 400, 437]. To avoid such

unintended negative consequences, it is necessary to understand how users interpret

and act upon explanations from LLMs, and how explanations and other features of

LLM responses might be adjusted to encourage appropriate reliance.

To explore these questions, we first conduct a think-aloud study with 16 partic-

ipants with varying knowledge of and experience with LLMs. In this study, partici-

pants answer objective questions with the use of the popular LLM-infused application

ChatGPT via multi-turn interactions. The goal of this preliminary study is to un-

derstand how people perceive LLM responses and which features of a response shape

their reliance. We observe that participants interpret inconsistencies in explanations

— that is, sets of statements that cannot be true at the same time [164] — as a cue of

unreliability. Participants also seek out sources to verify supporting details in LLM

responses and are less likely to rely on incorrect answers when the sources provide

helpful information.

Building on the findings from this study, we next conduct a large-scale, pre-

registered, controlled experiment (N = 308) in which participants answer difficult

objective questions with access to LLM responses, i.e., responses from a hypo-

thetical LLM named “Theta.”1 These responses were created in advance using

state-of-the-art LLM-infused applications ChatGPT and Perplexity AI so that we

can fully control their features. Specifically, we employ a 2 x 2 x 2 within-subjects

1We note that the line between what we would call an “LLM” as opposed to an “LLM-infused
system” can be blurry, especially when the system takes the form of a chatbot such as Theta or
ChatGPT. Throughout the paper, use the term LLM for readability in places where the distinction
is not important.
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design, varying three features of the LLM responses: accuracy of the LLM’s answer

to the question (correct/incorrect), presence of an explanation (absent/present),

and presence of clickable sources (absent/present). Further, we capitalize on the

natural inconsistencies that arise in LLM responses to investigate the effects of

inconsistencies. We examine the impact of these variables on participants’ reliance,

accuracy, and other measures, such as confidence, source clicking behavior, time on

task, evaluation of LLM responses, and likelihood of asking follow-up questions.

We find that when either or both an explanation and sources are present, partici-

pants report higher confidence in their answer, rate the LLM response higher in terms

of the quality of the justification it provides for the answer and the actionability of

its response, and are less likely to ask follow-up questions. However, explanations

and sources differ in their effects on reliance. Explanations increase reliance on both

correct LLM answers and incorrect LLM answers. In contrast, sources increase appro-

priate reliance on correct LLM answers, although less effectively than explanations,

while decreasing overreliance on incorrect LLM answers. Finally, when explanations

have inconsistencies, we observe less overreliance on incorrect LLM answers compared

to when there are no inconsistencies or when explanations are not provided at all.

We complement these quantitative findings with qualitative insights and close with

a discussion of implications and future research directions for fostering appropriate

reliance on LLMs.

Together, our approach and findings offer a number of contributions. (1) Our

studies tackle the timely and critical issue of fostering appropriate reliance on LLMs.

Since research on user reliance on LLMs is relatively new, we take a mixed-methods

approach, first (via the think-aloud study) identifying features of LLM responses that

shape user reliance, and then (via the controlled experiment) isolating and studying

the effects of the identified features. (2) Through our two studies, we identify which

combinations of features help people achieve appropriate reliance and high task
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accuracy, providing actionable insights on how to adjust LLM response features.

We also contribute a more holistic and nuanced understanding of user reliance on

LLMs with insights on people’s interpretation of explanations from LLMs, source

clicking behavior, and interaction effects between explanations and sources. (3) We

provide an in-depth discussion of the implications of our findings, limitations of our

work, and future research directions. In particular, we identify providing (accurate

and relevant) sources and highlighting inconsistencies and other unreliability cues in

LLM responses as promising strategies for fostering appropriate reliance on LLMs.

However, such approaches should always be tested with users before deployment.

6.2 Related work

6.2.1 Appropriate reliance on AI

Despite the rapid progress of technology, AI systems still frequently and unexpectedly

fail. Without knowing when and how much to rely on a system, a user may experience

low-quality interactions or even safety risks in high-stakes settings. Prior work has

investigated how providing information about an AI system’s accuracy [147, 424, 426]

and (un)certainty [26, 58, 62, 139, 437], explanations of outputs [26, 58, 62, 137, 139,

212, 437], and onboarding materials [68, 213] impact user reliance, as well as the

roles played by human intuition [75], task complexity [327, 328], and other human,

AI, and context-related factors [191]. However, fostering appropriate reliance on AI

remains difficult. Findings on the effectiveness of proposed methods are mixed, and

more research is needed on how reliance is shaped in real-world settings.

While most prior work on AI reliance has been in the context of classical AI models

(e.g., specialized classification models), there is a growing body of work looking at

reliance on systems based on LLMs or other modern generative AI models [193,

222, 349, 357, 385, 444]. For example, several recent studies explored the effect
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of communicating (un)certainty in LLMs by highlighting uncertain parts of LLM

responses [357, 385] or inserting natural language expressions of uncertainty [193,

444], finding that some but not all types of (un)certainty information help foster

appropriate reliance.

Contributing to this line of work, we first take a bottom-up approach to identify

the features of LLM responses that impact user reliance in the context of answering

objective questions with the assistance of a popular LLM-infused application Chat-

GPT (Section 6.3). In line with findings from prior work [349], we see that reliance is

shaped by the content of explanations provided by the system, particularly whether

or not these explanations contain inconsistencies. We also observe that participants

seek out sources to verify the information provided in responses. We then design a

large-scale, pre-registered, controlled experiment to isolate and study the effects of

these features (Section 6.4). We discuss the relevant literature on these features and

their impact on AI reliance next.

6.2.2 Explanations and inconsistencies

The impact of explanations on human understanding and trust of AI systems has

been studied extensively within the machine learning and human-computer interac-

tion communities, often under the names explainable AI or interpretable machine

learning [27, 192, 225, 323, 414]. Explanations are often motivated as a way to

foster appropriate reliance and trust in AI systems, since in principle they provide

clues about whether a system’s outputs are reliable. However, empirical studies have

shown mixed results, with a large body of work suggesting that providing expla-

nations increases people’s tendency to rely on an AI system even when it is incor-

rect [26, 312, 400, 437]. One potential reason for this is that study participants do not

make the effort to deeply engage with the explanations [60, 129, 182, 224, 384]. That

is, instead of encouraging deep, analytical reasoning (System 2 thinking [175, 176]),
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study participants may resort to heuristics, such as the explanation’s fluency or super-

ficial cues to expertise [375], and defer to the system’s response on this basis. People

may also be more likely to assume an AI system is trustworthy simply because it

provides explanations [111]. Further, some clues of unreliability may be difficult to

pick up on without existing domain knowledge [75].

Adopting the broad definition of an explanation as an answer to a why ques-

tion [53, 127, 245, 408], LLMs often provide explanations by default; when asked a

question, LLMs rarely provide the answer alone. For factual questions, they pro-

vide details supporting the answer [222, 418], and for math questions, they provide

detailed steps to derive the answer [87, 149]. This default behavior is likely due to

human preference for verbose responses [79, 325, 440]. Research in psychology has

shown that explanations are often sought spontaneously [128, 254], favored when they

are longer, more detailed, or perceived to be more informative [16, 32, 235, 406, 430],

and used to guide subsequent judgments and behaviors [243, 244]. Since LLMs are

often fine-tuned on human preference data via approaches such as Reinforcement

Learning from Human Feedback (RLHF) [82, 296, 447], such preferences would shape

the form of their outputs. We note that the default explanations that LLMs present

typically provide evidence to support their answers, but do not necessarily reflect the

internal processes by which the LLM arrived at the answer. This distinguishes these

explanations from those traditionally studied in the explainable AI literature.

Explanations generated by LLMs are widely known to contain inaccurate infor-

mation and other flaws [92, 171, 331, 348]. We direct readers to recent surveys for

comprehensive overviews [162, 393]. In our studies, we found inconsistencies in ex-

planations to be an important unreliability cue that shapes participants’ reliance.

As documented in prior work, inconsistencies can occur within a response; they are

sometimes referred to as logical fallacies or self-inconsistency in the NLP commu-

nity [161, 401]. Inconsistencies can also occur between responses; many studies have
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demonstrated that LLMs often change their answer to a question when challenged,

asked the question in a slightly different way, or re-asked the exact same question

[113, 209, 222]. Such inconsistencies, when noticed, may impact people’s evaluation

of explanations and reliance on LLMs.

We contribute to this line of work in several ways. We first conduct a qualita-

tive, think-aloud study to understand what features of LLM responses shape people’s

reliance, and find that reliance is shaped by explanations, inconsistencies in expla-

nations, and sources. We then conduct a larger-scale, pre-registered, controlled ex-

periment to quantitatively examine the effects of these features. While a previous

work by Si et al. [349] has studied the effects of LLM-generated explanations and

inconsistencies on people’s fact-checking performance through a small-scale study (16

participants per condition), our work provides a more holistic picture by studying

what (else) might contribute to reliance and how the identified features affect a wider

range of variables including people’s evaluation of the LLM response’s justification

quality and actionability and likelihood of asking follow-up questions. As for the

findings, first, consistent with Si et al. [349], we find that explanations increase peo-

ple’s reliance, including overreliance on incorrect answers, and that inconsistencies in

explanations can reduce overreliance. Additionally, we find that clickable sources —

which were not studied by Si et al. [349] — increase appropriate reliance on correct an-

swers, while reducing overreliance on incorrect answers, adding empirical knowledge

on user reliance on LLMs. Lastly, our work also contributes nuanced insights on peo-

ple’s interpretation of LLMs’ explanations, source clicking behavior, and interaction

effects between explanations and sources.
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6.2.3 Sources

The final feature of LLM responses that we study is the presence of sources, i.e., click-

able links to external material.2 Sources are increasingly provided by LLM-infused

applications, including general-purpose chatbots (e.g., ChatGPT, Gemini) and search

engines (e.g., Perplexity AI, Copilot in Bing, SearchGPT). Sources are commonly

sought by users, as found in prior work [195] and supported in our studies. Similar

to explanations, however, sources in LLM responses can be flawed in various ways

[11, 238]. For instance, Liu et al. [238] conducted a human evaluation of popular

LLM-infused search engines and found that their responses frequently contain inac-

curate sources and unsupported statements. Alkaissi and McFarlane [11] conducted

a case study of ChatGPT in the medical domain and found that it generates fake

sources. These issues were observed in our studies as well. Currently there is active

research on techniques such as Retrieval Augmented Generation (RAG) [130, 223] to

help LLMs provide more accurate information and sources.

It is well known that the presence and quality of sources impact how credible

people find given content in other settings [321, 402]. However, there has been

little work studying how people make use of and rely on sources in the context of

LLM-infused applications. On the one hand, the presence of sources might reduce

overreliance if people click on the provided links to verify the accuracy of the LLM’s

response. On the other hand, the presence of sources might increase reliance if

people interpret them as signs of credibility and defer to the system without verifying

the answers themselves. Indeed, in one study of uncertainty communication in

LLM-infused search, participants were found to rarely click on source links [193].

Through a large-scale, pre-registered, controlled experiment (Section 6.4), we study

how the presence of clickable sources impacts people’s reliance, task accuracy, and

2One might consider sources to be a component of an explanation. To simplify the exposition of
our results, we treat them as a distinct component of LLM responses throughout this paper.
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Figure 6.1: Overview of our studies. In Study 1, participants engaged in
multi-turn interactions with ChatGPT to arrive at correct answers to objective
questions. Based on a thematic analysis of think-aloud and behavioral data, we iden-
tified explanations, inconsistencies, and sources as three features of LLM responses
likely to influence user reliance. These three features were then investigated in a
controlled experiment (Study 2), with features operationalized as indicated in the
schematic illustration. Similar to Study 1, participants solved question-answering
tasks. However, this time, they had access to one LLM response whose features we
experimentally manipulated.

other measures, and how this interacts with the presence of explanations and incon-

sistencies. In our studies, we use realistic explanations and sources, generated by

state-of-the-art LLM-infused applications ChatGPT and Perplexity AI, and provide

insights for fostering appropriate reliance on LLMs.

6.3 Study 1: Think-aloud study

Towards the goal of identifying features of LLM responses that can help foster ap-

propriate reliance, we first take a bottom-up approach and conduct a think-aloud

study in a relatively natural setting. Specifically, we observe how participants solve

question-answering tasks with ChatGPT in multi-turn interactions, and explore how

they perceive ChatGPT’s responses and what helps them arrive at correct answers

despite incorrect answers from ChatGPT.
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6.3.1 Study 1 methods

In this section, we describe our study methods, all of which were reviewed and ap-

proved by our Institutional Review Board (IRB) prior to conducting the study.

Procedure

The study session had two parts. In Part 1 (Base), participants were introduced

to the study and asked to complete three question-answering tasks while thinking

aloud. Each task involved determining the correct answer to an objective question

using ChatGPT3 and reporting confidence in their final answer on a 1–7 scale. As

in natural settings, participants could exchange as many messages with ChatGPT

as they wished. Participants could also check the sources provided in ChatGPT’s

responses, but were asked not to conduct their own internet search.

Each participant was given three questions: a general domain factual question

(e.g., “Has Paris hosted the Summer Olympics more times than Tokyo?”), a health

or legal domain factual question (e.g., “Is it illegal to collect rainwater in Colorado?”),

and a math question (e.g., “Sue puts one grain of rice on the first square of a Go

board and puts double the amount on the next square. How many grains of rice does

Sue put on the last square?”). The factual questions were binary questions. The

math questions were not binary, but had one correct numerical answer. The specific

question was randomly selected from a set of questions we created in advance based

on examples of real user-LLM interactions [297] and prior work [346, 416]. Before

beginning the tasks, we also asked each participant if they knew the answer to any

of the questions so that we could switch to a different question if they did, but this

did not happen.

3We created a research account with a Plus subscription. Participants logged into our account
and used ChatGPT-4o — the latest version at the time (June 2024) — through the web interface
with Browsing allowed and Memory disallowed.
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In Part 2 (Prompting), we asked participants to complete the same three tasks

again, but this time while employing follow-up prompts in their engagement with

ChatGPT. We designed Part 2 to explore whether certain prompts can help partic-

ipants more appropriately rely on ChatGPT and succeed on the tasks. Since par-

ticipants had different levels of familiarity with prompting, we provided examples

of prompts they could use, such as asking for a different type of explanation (e.g.,

“Explain step by step” and “Explain like I’m five”), asking for more information

(e.g., “Provide an explanation with supporting sources” and “Explain how confident

you are in the answer”), and challenging the previous response (e.g., “Explain why

your answer may be wrong” and “I think you are wrong. Try again”). Participants

could use whichever and as many prompts as they wished. As in Part 1, participants

reported their final answer and confidence in their final answer at the end of each task.

In between Part 1 and Part 2 and before concluding the study, we asked interview

questions about participants’ perception of and experience with ChatGPT. Details

are in the supp. mat.

Participant recruitment and selection

To recruit participants, we posted a screening survey on Mastodon, X (previously

Twitter), and various mailing lists and Slack workspaces within and outside the first

author’s institution. The survey included questions about the respondent’s knowledge

and use of LLMs. Based on the survey responses, we selectively enrolled participants

to maximize the diversity of the study sample’s LLM background. See below for

a summary of participants’ knowledge and use of LLMs. We manually reassigned

two participants to different categories than what they selected in their survey when

their survey responses did not line up with their described experience (high to low

knowledge for one participant and low to high knowledge for another). We refer to

individual participants by identifier P#.
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• Low-knowledge: “Slightly familiar, I have heard of them or have some idea of

what they are” (P6, P9, P13, P15) or “Moderately familiar, I know what they

are and can explain” (P2, P3, P11, P14).

• High-knowledge: “Very familiar, I have technical knowledge of what they are

and how they work” (P1, P4, P8, P10, P16) or “Extremely familiar, I consider

myself an expert on them” (P5, P7, P12).

• Low-use: “Never” use LLMs (P5, P13, P15, P16) or use LLMs “Rarely, about

1–2 times a month” (P4) or use LLMs “Sometimes, about 3-4 times a month”

(P3, P6, P8).

• High-use: Use LLMs “Always, about once or more a day” (P1, P2, P7, P9, P10,

P11, P12, P14).

Conducting and analyzing studies

We collected data from 16 participants in June 2024, each over a Zoom video call.

The study lasted one hour on average, and participants were paid $20 for their

participation. All sessions were video recorded and transcribed for data analysis. We

used a mix of quantitative and qualitative methods to analyze the study data. On

the quantitative side, we analyzed the accuracy of participants’ answers and their

self-reported confidence in their answers measured on a 1–7 scale for each task. Since

each participant solved three tasks, once in Part 1 and again in Part 2, there are

6 accuracy and 6 confidence numbers for each participant. On the qualitative side,

we conducted a thematic analysis [48, 51] of participants’ think-aloud data and their

responses to interview questions to identify features of LLM responses that shaped

participants’ reliance. The first author performed the initial coding, discussed the

categories with other authors, and then refined the coding.
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6.3.2 Study 1 results

We first provide some descriptive statistics about participants’ accuracy, over- and

underreliance, and confidence across the two parts of the study (Section 6.3.2). We

then discuss which LLM response features participants reported as influences on their

reliance (Section 6.3.2). We emphasize that this study was not intended to provide

statistically significant results, but to identify features that may help foster appropri-

ate reliance. Given the small sample size, we report the quantitative results only to

provide context.

Accuracy, reliance, and confidence

In Part 1 (Base), we collected data on 48 task instances (16 participants × 3 tasks).

For 34 of these instances, ChatGPT gave a correct answer in its first response. (Chat-

GPT sometimes changed its answer over the course of the interaction, either due to

stochasticity or in response to participants’ follow-up messages.) Among these, par-

ticipants’ final answer agreed with ChatGPT’s correct answer in 33 instances (average

confidence 5.97 on the 1–7 scale) and disagreed in only a single instance (confidence

4.5), indicating that underreliance was not prevalent. In 13 instances, ChatGPT

gave an incorrect answer in its first response. Among these, participants’ final answer

agreed with ChatGPT’s incorrect answer in 9 instances (average confidence 6.15)

and disagreed in only 4 instances (average confidence 5.61), indicating widespread

overreliance. In a single instance, ChatGPT did not answer the question in its first

response, and the participant submitted an incorrect answer with a confidence of 2.

We did not find meaningful differences in participants’ accuracy between the two

parts of the study. That is, follow-up prompting did not increase participants’

accuracy, at least based on our small sample of quantitative data. For 44 out of 47

instances in which the participant completed Part 2 (Prompting) (one participant had

to skip a task instance due to lack of time), the participant submitted the same answer
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in both parts. In 3 instances, participants submitted an incorrect answer in Part 1

and a correct answer in Part 2. In 2 of these 3 instances, ChatGPT gave an incorrect

answer in Part 1, but gave a correct answer in Part 2. In the other instance, ChatGPT

gave incorrect answers in both parts, but the participant arrived at the correct answer

in Part 2 after engaging in multiple rounds of interaction with ChatGPT.

Finally, we compared participants’ confidence in their answers for the same task

between the two parts, finding that it increased in Part 2 in 19 instances, decreased in

8 instances, and stayed the same in 20 instances. However, changes in confidence

do not correspond to changes in answers. As mentioned above, participants

changed their answers in only 3 out of 47 instances. In these 3 instances, partici-

pants’ confidence stayed the same or increased slightly as their answer changed from

being incorrect to correct. Participants’ self-described reasons for increased confi-

dence included seeing and checking sources, seeing ChatGPT give the same answer

multiple times, and receiving more information in general. Reasons for decreased con-

fidence included experiencing issues with sources (e.g., links were broken or sources

were not reputable) and seeing ChatGPT change answers.

LLM response features shaping reliance

From a thematic analysis of participants’ think-aloud data and responses to interview

questions, we found explanations, inconsistencies, and sources to be key features

of LLM responses that participants reported as influences on reliance. First, consis-

tent with our discussion in Sections 6.1 and 6.2.2, we observed that ChatGPT pro-

vided explanations of its answers by default. Participants found these explanations

important for judging the reliability of ChatGPT’s answers. For example, P14 (low-

knowledge, high-use) described explanations as “very important for having reliability

on the answer” and said “the more explanation it [ChatGPT] can provide me about

the answer [...] the more I would be able to rely on it.” P11 (high-knowledge, high-
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use) added that they judge the response by “how well ChatGPT explains the answer.”

This participant judged ChatGPT’s explanation in one task to be very high quality,

noting “I would put this on my homework and submit it [...] the quality is very high”.

However, in another task, P11 submitted a different answer from ChatGPT af-

ter observing inconsistencies: “Since it [ChatGPT] doesn’t answer these simple

questions consistently, I don’t trust it as much.” Sometimes inconsistencies occurred

within a response (e.g., ChatGPT saying Paris hosted the Summer Olympics more

times than Tokyo while also saying both have hosted twice). At other times in-

consistencies occurred across multiple responses (e.g., ChatGPT changing its answer

when asked the same or similar questions, or when challenged). In either case, when

participants observed inconsistencies, they often asked follow-up questions

and engaged more with the system to resolve the inconsistencies. For exam-

ple, when P8 (high-knowledge, low-use) was considering the question “Did Tesla debut

its first car model before or after Dropbox was founded?” ChatGPT initially stated

that Tesla debuted its first car model in 2008 then later changed the year to 2006. Af-

ter noticing the inconsistencies, P8 engaged in three more rounds of interaction with

ChatGPT to verify individual pieces of information, and arrived at the correct answer.

Finally, participants frequently sought and used sources to determine whether

or not to rely on ChatGPT. More often than not, ChatGPT did not provide sources

as part of its responses, even though participants were using the latest version at the

time of the study (4o) with browsing capabilities. Participants had to explicitly ask

for them using prompts like “Provide sources for the answer.” Participants rarely

did this in Part 1, and as such, sources were provided in only 17 out of 48 instances.

However, in Part 2, participants asked for sources more often after seeing prompt

examples and were provided sources in 30 instances. When participants checked

sources, they were often able to avoid overreliance on ChatGPT. For

example, out of 11 instances in which participants submitted correct answers despite
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incorrect answers from ChatGPT (both parts combined), 7 were instances in which

participants checked sources. (In the other 4 instances, sources were not provided,

but participants were able to submit correct answers through other strategies, such

as repeatedly asking ChatGPT about a piece of information.) For example, when

P2 (low-knowledge, high-use) was solving the question “Sue puts one grain of rice

on the first square of a Go board and puts double the amount on the next square.

How many grains of rice does Sue put on the last square?” ChatGPT built on an

incorrect assumption about the size of a Go board and gave an incorrect answer. P2

initially judged it as correct, but after checking sources, realized ChatGPT’s error

and was able to submit a correct answer.

As discussed in Section 6.3.2, sources also influenced participants’ confidence in

their answers. The presence of sources increased confidence in general, ex-

cept when there were issues with sources. For example, P1 (high-knowledge,

high-use) said their confidence increased in Part 2 for one task when they received

sources and were able to verify information in ChatGPT’s responses. But they said

their confidence decreased for another task when some of the source links did not

open or did not contain relevant information, highlighting the importance of source

quality in addition to presence. Finally, we emphasize that checking sources did

not always eliminate overreliance. Out of 30 instances in which participants

checked sources (both parts combined), in 4 instances, participants’ final answer still

agreed with ChatGPT’s incorrect answer, which is a sign of overreliance.

6.4 Study 2: Large-scale, pre-registered, con-

trolled experiment

Based on the insights from Study 1, we designed a large-scale, pre-registered, con-

trolled experiment to study the effects of different features of LLM responses on
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Figure 6.2: Screenshots of Study 2’s experimental task. Here the LLM
response provides an incorrect answer, includes sources, and includes an explanation
(with inconsistencies). See Figure 6.3 for responses with a correct answer for the
same task question.

people’s reliance, task accuracy, and other measures including confidence, source

clicking behavior, time on task, evaluation of LLM responses, and asking of follow-up

questions. The goal of the study was to test whether the findings from Study 1 apply

at scale and identify which combinations of features help people achieve appropriate

reliance and high task accuracy.

6.4.1 Study 2 methods

In this section, we describe our study methods. Before collecting data, we obtained

IRB approval and pre-registered our experimental design, analysis plan, and data

collection procedures.4

Procedure

We designed a within-subjects experiment in which participants completed a set of

question-answering tasks with LLM responses. Each task involved determining the

4Our pre-registration is viewable at https://aspredicted.org/bg22-yfw7.pdf.
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correct answer to a binary factual question with access to a response from a hypo-

thetical LLM named “Theta” (hereafter we occasionally refer to it as “the LLM”).

See Figure 6.2 for an example. Our experiment had a 2 x 2 x 2 design where we

varied three variables in Theta’s responses: accuracy of Theta’s answer to the ques-

tion (correct/incorrect), presence of an explanation (absent/present), and presence of

clickable sources (absent/present). In total, there were 8 types of responses. Partic-

ipants completed 8 tasks in the experiment and saw one of each type. This makes

Theta’s accuracy 50%, but participants were not given this information: participants

did not receive feedback on whether their answer or Theta’s answer was correct after

solving a task. See Figure 6.3 for examples of different types of responses.

The experiment had three parts. In the first part, participants were introduced to

the study and to Theta. Theta was described as an LLM-based AI system prototype

that uses similar technology to OpenAI’s ChatGPT, is connected to the internet,

and can answer a wide range of questions. In the second part, participants answered

a total of eight questions. For each question, participants were provided with a

response from Theta and were asked to submit their answer, report their confidence

in their answer, and rate Theta’s response. They were told that they could click on

source links in Theta’s responses, but asked not to conduct their own internet search.

Participants could also optionally write a follow-up question, but they did not see

Theta’s response to it. We made this choice to fully control the number and content

of responses, while being able to collect data on when and what types of follow-up

questions participants ask. We acknowledge that showing one controlled response

instead of allowing free-form interaction has limitations (see Section 6.5.3). However,

we adopt this method from prior work studying LLMs [193, 222, 349] as a valid

approach for capturing user perceptions and behaviors around LLM responses with

the advantage of controlling unwanted noise from free-form interactions (for instance,

LLMs making different mistakes across participants in follow-up interactions).

175



Figure 6.3: Types of LLM responses used in Study 2. We vary three
variables in the LLM responses: accuracy of the LLM’s answer to the question
(correct/incorrect), presence of an explanation (absent/present), and presence of
clickable sources (absent/present). In total there are 8 types of responses. Here we
show 4 types of responses with a correct answer to the question: “Do more than two
thirds of South America’s population live in Brazil?” See Figure 6.2 for a response
with an incorrect answer.

We randomized the order in which questions were presented, as well as the assign-

ment of the 8 response types to the questions. In the final part, participants filled

out an exit questionnaire about their experience with and perception of Theta, their

background on LLMs, and basic demographic information. Lastly, participants were

debriefed and reminded that some of the responses they saw may have contained

inaccurate information.

Dependent variables

We formed a set of dependent variables (DVs) using a mix of behavioral and self-

reported measures to capture participants’ reliance and accuracy, as well as related

behaviors and judgments. First, we measured the agreement between a participant’s
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answer and that of Theta; this is a commonly used behavioral measure of reliance

[58, 69, 212, 237, 250, 277, 424, 437]. Second, we measured the accuracy of a par-

ticipant’s answer to assess the task outcome. These are our main two DVs. To

complement them, we also examined participants’ confidence and source clicking be-

havior as indirect measures of reliance, as well as time on task, since efficiency is also

an important aspect of task outcome. These complementary measures have also been

commonly studied in prior work [69, 81, 190, 193, 250, 312, 385].

Additionally, we had participants evaluate the individual LLM responses. First,

we had participants evaluate the justification quality of a response, i.e., whether it

offers a good justification for its answer. Based on prior work in psychology, we

expected this to be correlated with reliance and confidence [101, 243], as well as

whether participants ask follow-up questions [128, 235]. Second, we had participants

evaluate the actionability of a response, as incorrect responses or responses with low

justification quality can still be useful if they are actionable; recall that in Study 1,

we observed that participants often treated an LLM response as a starting point for

determining what action to take next to arrive at the correct answer. Finally, we

measured whether participants wrote a follow-up question they would like to ask to

Theta. This is in part a proxy for satisfaction: prior work in psychology has found

that children are less likely to re-ask a question when they are satisfied with an initial

response [50, 207, 272]. On the other hand, greater satisfaction with a response can

increase curiosity about related content [235].

Formally, we measured the following DVs based on participants’ observed

behavior:

• Agreement: TRUE if the participant’s final answer is the same as Theta’s an-

swer; FALSE otherwise.

• Accuracy: TRUE if the participant’s final answer is correct; FALSE otherwise.
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• SourceClick: TRUE if the participant clicked on one or more sources; FALSE

otherwise.

• Time: Number of minutes from when the participant saw the question to when

they clicked next.

We additionally measured the following DVs based on participants’ self-reported

ratings or selections:

• Confidence: Rating on the question “How confident are you in your answer?”

on a 7-point scale.

• JustificationQuality: Rating on the statement “Theta’s response offers good

justification for its answer” on a 7-point scale.

• Actionability: Rating on the statement “Theta’s response includes informa-

tion that helps me determine what my final answer should be” on a 7-point

scale.

• Followup: TRUE if the participant wrote a follow-up question they would like

to ask instead of selecting “I’m satisfied with the current response and would

not ask a follow-up question.”

All DVs were measured once for each of the 8 tasks. See Figure 6.2 for screenshots

of an example task.

Analysis

We hypothesized that the three features of LLM responses that we manipulated

— the accuracy of the answer, the presence of sources, and the presence of an

explanation — would affect each of the DVs. To examine this hypothesis, we used a

mixed-effects regression model (logistic or linear depending on the data type), where

each participant has a unique ID and each task question has a unique ID. Specifically,
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for each DV except SourceClick, we fit the model DV ∼ AI Correct * AI Sources

* AI Explanation + (1|participant) + (1|question). For SourceClick,

we fit the model DV ∼ AI Correct * AI Explanation + (1|participant) +

(1|question) only looking at data points for which participants were provided with

sources. AI Correct, AI Sources, and AI Explanation are binary variables with

Correct Answer, No Sources, and No Explanation as the reference levels.

We complemented the main analysis with several additional analyses. First, we

conducted two pre-registered analyses exploring how participants reacted to inconsis-

tencies in explanations (Section 6.4.3) and how participants’ source clicking behavior

relates to other DVs (Section 6.4.3). Analysis details and results are presented in the

respective sections. Second, we conducted a thematic analysis [48, 51] of participants’

free-form answers in the exit questionnaire. The results are presented in Section 6.4.2

alongside the quantitative results from the main analysis.

Materials

To simulate a realistic LLM usage scenario of users seeking answers to questions

they don’t know the answer to, we selected task questions according to the following

criteria: (1) most lay people should not know the answer off the top of their head

so that they will likely engage with the LLM response and (2) the answer can be

objectively and automatically assessed. To satisfy the criteria, we first created 32

binary factual questions based on facts from the books Weird But True Human

Body [186] and Weird But True World 2024 [187] by National Geographic Kids. We

then ran a short pilot study (N = 50) in which we asked participants to answer the

32 questions based on their knowledge and without consulting external sources. This

allowed us to assess how commonly known the answers to the questions are in our

sample. We selected questions with less than 50% accuracy (i.e., worse than random

guessing) as our final set of task questions (12 in total) to satisfy our first selection
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criterion. However, we acknowledge that focusing on difficult questions may affect

the generalizability of our results. See Figures 6.2 and 6.3 for an example question

and the supp. mat. for the full set.

To create LLM responses that are realistic and reflect the state-of-the-art, we

used ChatGPT-4o with a Plus subscription and with Browsing allowed, Memory

disallowed, and a new chat for each prompt. Initially, we inputted the selected task

questions to ChatGPT without any system prompts. Consistent with prior work [222],

we observed that ChatGPT’s responses generally follow the same structure: answer

to the question (e.g., yes or no) followed by an explanation (supporting details).

However, the responses greatly varied in form (e.g., the number of paragraphs and

the use of bulleted or numbered lists) and length (ranging from 48 to 213 words). To

reduce this variability, we used the system prompt “Provide a one paragraph response

not exceeding 180 words” following the choices in prior work [222].

For each task question, we first created a pair of responses with explanations,

one with a correct answer and one with an incorrect answer. To do so, we used the

prompts “Why is [correct answer/incorrect answer] the correct answer to the question:

[Task question]?” We note that the obtained responses were similar in nature to

responses obtained by just asking the task question. We phrased the prompts this

way to reduce any structural differences between responses for correct and incorrect

answers. We made minor edits to improve readability and ensure all responses had

the same structure (i.e., answer to the question followed by an explanation). We did

not make substantive edits to the content. To create responses without explanations,

we removed the explanation component from these responses.

To create responses with sources, we sent the same prompts to Perplexity AI, one

of the most popular LLM-infused search engines, with a Plus subscription and with

GPT-4o as the AI model. This is because none of the responses from ChatGPT-4o

included sources, even with Browsing allowed. Perplexity AI’s responses included 5
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to 10 sources. When we analyzed the sources, we found that all sources are real,

relevant to the task question, and tended to provide accurate information, although

we could not fact-check every single statement in these sources. To not overwhelm

participants, we randomly selected 3 sources and appended them to the responses

with/without explanations to create responses with sources. All responses from

ChatGPT-4o and Perplexity AI were retrieved between July 29 and August 1 of 2024

using the latest version at the time.

After creating different types of LLM responses, we went through the responses

again and coded the presence of inconsistencies, i.e., sets of statements that cannot

be true at the same time [164], which we found to be an important unreliability

cue in Study 1.5 We found that 3 out of 12 responses with explanations for an

incorrect answer contained inconsistencies: (1) For the task question “Do more than

two thirds of South America’s population live in Brazil?” the incorrect response

(see Figure 6.2) says “yes” but later states Brazil’s population as around 213 million

and South America’s total population as around 430 million. (2) For “Which body

part has a higher percentage of water, lungs or skin?” the incorrect response says

“skin” but later states skin has 64% and lungs have 83% water percentage. (3) For

“Do all mammals except platypus give birth to live young?” the incorrect response

says “yes” but later states echidnas as another mammal species that does not give

birth to live young. In contrast, none of the 12 responses with an explanation for a

correct answer contained inconsistencies. While the presence of inconsistencies is not

something we control for or manipulate, we coded it to study its effects on reliance

5To code inconsistencies, we carefully read each LLM response and reasoned about every pair of
statements (whether they can be true at the same time). This was doable because the responses
are relatively short (less than 180 words) and do not require specialized knowledge to understand.
For the same reasons, we expect most people to be able to notice these inconsistencies. We note
that this may not always be the case. The presence of inconsistencies may have little to no effect
if they are hard to detect, for example, because the LLM response is long, complex, and requires
specialized knowledge to understand that two statements cannot be true at the same time.
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and other measures. See Figure 6.3 for examples of different types of responses and

the supp. mat. for more information on the study materials.

Participants

We aimed to collect a minimum of 300 responses post-exclusions. This number was

determined based on a power analysis on pilot data using the simR package in R

[141]. We conducted data collection using Qualtrics and Prolific in August 2024.

Specifically, we collected responses from 320 U.S.-based adults on Prolific who had

completed at least 100 prior tasks with a 95% or higher approval rating. We excluded

12 responses (3.75%) based on three pre-registered exclusion criteria (3 for response

time under 5 minutes, 9 for less than 80% accuracy on the post-task attention check,

and 1 for off-topic free-form response; 1 response was caught on multiple criteria).

Our final sample consists of 308 responses. Regardless of inclusion or exclusion in the

final sample for analysis, we paid all participants $3.75. The median study duration

was 15.3 minutes, so on average, participants were paid $14.70 per hour. See the

supp. mat. for more information about participants.

6.4.2 Study 2 results: Main analysis

We begin with the main analysis results. We report the raw data means (M) and

standard deviations in Table 6.1 and the regression results (β, SE, p) in the text.

We use significance to refer to statistical significance at the level of p < .05. Recall

that we fit mixed-effects regression models with three variables and all possible

interactions (see Section 6.4.1 for details). We did not find a significant three-way

interaction for any DVs. Given our interest in the effects of explanation and sources

in LLM responses, we report significant main effects and two-way interactions in

the following order: main effects of explanation and interactions with LLM accu-

racy (Section 6.4.2), main effects of sources and interactions with LLM accuracy
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Table 6.1: Study 2 main results. We report the raw data means (and standard
deviations) for the eight types of LLM responses: {Correct ✓, Incorrect ✗ answer} ×
{Neither, Explanation only, Sources only, Explanation & Sources}. See Section 6.4.2
for details.

DV Answer Neither Explanation only Sources only Explanation & Sources

Agreement (%)
✓ 67.2% (47.0%) 78.2% (41.3%) 73.4% (44.3%) 79.9% (40.2%)
✗ 78.2% (41.3%) 82.8% (37.8%) 68.2% (46.7%) 76.9% (42.2%)

Accuracy (%)
✓ 67.2% (47.0%) 78.2% (41.3%) 73.4% (44.3%) 79.9% (40.2%)
✗ 21.8% (41.3%) 17.2% (37.8%) 31.8% (46.7%) 23.1% (42.2%)

Confidence (1-7)
✓ 4.55 (1.68) 5.26 (1.47) 5.50 (1.58) 5.83 (1.28)
✗ 4.92 (1.73) 5.47 (1.44) 5.43 (1.51) 5.61 (1.28)

SourceClick (%)
✓ - - 28.2% (45.1%) 25.0% (43.4%)
✗ - - 27.9% (44.9%) 22.1% (41.5%)

Time (min)
✓ 1.05 (1.23) 1.08 (0.98) 1.24 (1.04) 1.30 (1.14)
✗ 0.89 (0.85) 1.05 (0.94) 1.39 (1.16) 1.44 (1.30)

Justification ✓ 2.58 (1.89) 5.52 (1.48) 4.45 (2.13) 5.99 (1.32)
Quality (1-7) ✗ 2.81 (2.09) 5.51 (1.62) 3.90 (2.17) 5.44 (1.75)

Actionability (1-7)
✓ 2.56 (1.94) 5.14 (1.74) 4.90 (2.06) 6.13 (1.19)
✗ 2.91 (2.09) 5.32 (1.72) 4.59 (2.09) 5.62 (1.63)

FollowUp (%)
✓ 71.4% (45.2%) 28.2% (45.1%) 34.4% (47.6%) 12.7% (33.3%)
✗ 65.3% (47.7%) 27.6% (44.8%) 47.1% (50.0%) 25.6% (43.7%)

(Section 6.4.2), interactions between explanation and sources (Section 6.4.2), and

additional effects of LLM accuracy (Section 6.4.2).

Main effects of explanation and interactions with LLM accuracy

We find a significant main effect of explanation on most DVs (all except SourceClick

and Time). Specifically, provided that the LLM answer is correct and there are no

sources, providing an explanation leads to higher participant agreement with the LLM

answer (M = 78.2% vs. 67.2%, β = .60, SE = .19, p = .002), accuracy (M = 78.2%

vs. 67.2%, β = .65, SE = .19, p < .001), confidence in the final answer (M = 5.26 vs.

4.55, β = .74, SE = .10, p < .001), rating of the LLM response’s justification quality

(M = 5.52 vs. 2.58, β = 2.94, SE = .13, p < .001), and rating of its actionability

(M = 5.14 vs. 2.56, β = 2.59, SE = .13, p < .001). On the other hand, the likelihood
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of asking a follow-up question is lower when an explanation is provided (M = 28.2%

vs. 71.4%, β = −2.38, SE = .21, p < .001).

For participants’ accuracy, however, we find a significant interaction between the

presence of an explanation and the accuracy of the LLM answer (β = −1.00, SE =

.28, p < .001). In the absence of sources, when the LLM answer is correct, partici-

pants’ accuracy is higher when an explanation is provided (M = 78.2% vs. 67.2%).

In contrast, when the LLM answer is incorrect, accuracy is lower when an explanation

is provided (M = 17.2% vs. 21.8%). That is, in both cases, participants submitted

the same answer as the LLM’s more often when an explanation was provided.

We find support for these findings in the qualitative data as well. In their free-

form answers in the exit questionnaire, 28 participants wrote that they submitted

a different answer from the LLM’s answer when there was no explanation. As put

by one participant, “One sentence answers felt incomplete and did not explain how

Theta arrived at its conclusion.” Another wrote the absence of explanation “made

the [LLM’s] answer too hard to trust.”

In summary, we find that explanations tend to increase reliance, both ap-

propriate reliance on correct answers and overreliance on incorrect an-

swers. Explanations also tend to increase participants’ confidence in their answer

and evaluation of the LLM response, and decrease their likelihood of asking a follow-

up question. Intuitively, this suggests participants viewed LLM responses with expla-

nations as more satisfying and reliable, regardless of their accuracy. These findings

are consistent with prior research [26, 120, 299, 312, 349, 400, 437] and suggest expla-

nations from state-of-the-art LLMs can also lead to overreliance and have unintended

negative consequences.
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(a) Effect of explanation, sources, LLM accuracy (b) Effect of inconsistencies

Figure 6.4: Summary of participants’ accuracy in Study 2. We plot the raw
data means and 95% confidence intervals for participants’ accuracy when provided
with different types of LLM responses. When the LLM’s answer is correct, partici-
pants’ accuracy is highest when the LLM response includes an explanation and sources
(Figure 6.4a left). When the LLM’s answer is incorrect, participants’ accuracy is
highest when the LLM response includes sources but not an explanation (Figure 6.4a
right). When the LLM response includes an explanation for an incorrect answer,
participants’ accuracy is higher when the explanation is inconsistent (Figure 6.4b).

Main effects of sources and interactions with LLM accuracy

We find a significant main effect of sources on the time spent on the task, as well as

on all self-reported variables. That is, when the LLM answer is correct and there is

no explanation, providing sources leads to higher participant time on task (M = 1.24

min vs. 1.05 min, β = .17, SE = .07, p = .027), confidence in the final answer

(M = 5.50 vs. 4.55, β = .96, SE = .10p < .001), rating of the LLM response’s

justification quality (M = 4.45 vs. 2.58, β = 1.88, SE = .13, p < .001), and rating of

its actionability (M = 4.90 vs. 2.56, β = 2.34, SE = .13, p < .001). In contrast, the

likelihood of asking a follow-up question is lower when sources are provided (M =

34.4% vs. 71.4%, β = −2.04, SE = .20, p < .001).

However, we find a significant interaction between the presence of sources and LLM

accuracy on many DVs. Beginning with agreement (β = −.83, SE = .27, p = .002),

provided that there is no explanation, when the LLM answer is correct, agreement is

higher when sources are provided (M = 73.4% vs. 67.2%). But when the LLM answer

is incorrect, agreement is lower when sources are provided (M = 68.2% vs. 78.2%).
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These results suggest that sources tend to increase appropriate reliance on

correct answers and reduce overreliance on incorrect answers.

Significant interactions are also found for all self-reported variables: Confidence

(β = −.45, SE = .14, p = .002), JustificationQuality (β = −.79, SE =

.19, p < .001), Actionability (β = −.65, SE = .19, p < .001), and Followup

(β = 1.05, SE = .27, p < .001). Provided that there is no explanation and the LLM

answer is correct, providing sources increases Confidence, JustificationQuality,

and Actionability while decreasing Followup. When the LLM answer is incorrect,

these effects of sources are all attenuated. The fact that sources have different effect

sizes for correct and incorrect LLM answers provides further (if indirect) support for

the idea that sources can help foster appropriate reliance.

The final significant interaction between sources and LLM accuracy is found for

time on task (β = .33, SE = .11, p = .002). Provided that there is no explanation,

when the LLM answer is correct, time on task is higher when there are sources

(M = 1.24 min vs. 1.05 min). But when the LLM answer is incorrect, this effect

of sources on time on task is magnified (M = 1.39 min vs. .89 min). A possible

reason for this result is that when the LLM answer is incorrect, in some instances

participants may have found conflicting information between the LLM response and

the sources and spent more time resolving the conflict and completing the task. For

example, 45 participants wrote in their free-form responses that they submitted a

different answer from the LLM’s answer when it conflicted with the information in

the sources, e.g., “I trusted the information in the links more than I trusted Theta’s

answer. Therefore, if the information in the links differed, I submitted a final answer

that was different from Theta’s.”

Participants also wrote that the mere presence of sources tended to increase the

credibility of the LLM response (e.g., “If Theta supplied sources for its answers, I felt

the answers were more credible”), while the absence of sources had the opposite effect
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(e.g., “Not having any links provided with [Theta’s] answer was a red flag to me to

think something is wrong or can’t be found”). 29 participants explicitly stated that

they submitted a different answer from the LLM’s answer when there were no sources

in the LLM response. Additionally, several participants wrote about how they were

forced to rely on their intuition when there were no sources, e.g., “Without being able

to verify info, my gut was my best answer.” They expressed frustration about this

and said they would prefer to have sources since it is “easiest to agree or disagree

when the AI cited its sources.”

Interactions between explanation and sources

In addition to the main effects of explanation and sources and their respective inter-

actions with LLM accuracy, we find a significant interaction between explanation and

sources for all self-reported variables: Confidence (β = −.42, SE = .14, p = .004),

JustificationQuality (β = −1.41, SE = .19, p < .001), Actionability (β =

−1.36, SE = .19, p < .001), and Followup (β = .81, SE = .31, p < .001). Provided

that the LLM answer is correct, when there are no sources, providing explanations

increases Confidence (M = 5.26 vs. 4.55), JustificationQuality (M = 5.52

vs. 2.58), and Actionability (M = 5.14 vs. 2.56), while decreasing Followup

(M = 28.2% vs. 71.4%). When there are sources, however, providing explanations

still increases Confidence (M = 5.83 vs. 5.50), JustificationQuality (M = 5.99

vs. 4.45), and Actionability (M = 6.13 vs. 4.90), while decreasing Followup

(M = 12.7% vs. 34.4%), but all to a lesser extent than when there are no sources.

In short, including both explanation and sources achieves the biggest effects in these

measures, though their joint effects are subadditive, i.e., less than the sum of the

individual effects.
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Figure 6.5: Study 2 results on inconsistencies. We plot the raw data means
and 95% confidence intervals. Brackets indicate statistically significant differences
between three types of incorrect LLM responses: No explanation, Consistent ex-
planation, and Inconsistent explanation. Significance is marked as ∗ (p < .05), ∗∗

(p < .01), and ∗∗∗ (p < .001). See Section 6.4.3 for details.

Additional effects of LLM accuracy

Finally, we find a significant main effect of LLM accuracy on many DVs, in addition

to its interactions with explanation and sources reported above. Provided that there

are no sources or explanation, when the LLM answer is incorrect compared to correct,

agreement is higher (M = 78.2% vs. 67.2%, β = .60, SE = .19, p = .002), confidence

is higher (M = 4.92 vs. 4.55, β = .37, SE = .10, p < .001), and Actionability is

higher (M = 2.91 vs. 2.56, β = .35, SE = .13, p = .007), while accuracy is lower

(M = 21.8% vs. 67.2%, β = −2.07, SE = .19, p < .001) and time on task is lower

(M = .89 min vs. 1.05 min, β = −.17, SE = .08, p = .025). These results suggest

that participants found incorrect answers more plausible than correct answers for

the task questions used in the experiment. This is not surprising as we deliberately

selected challenging questions, i.e., questions with less than 50% human accuracy in

our pilot study. As such, this is likely a feature of our stimulus materials rather than

a generalizable finding.
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6.4.3 Study 2 results: Additional analyses

Finally, we report results from our additional pre-registered analyses on the effects of

inconsistencies in explanations (Section 6.4.3) and the relationship between partici-

pants’ source clicking behavior and other DVs (Section 6.4.3).

Inconsistencies in explanations

In Study 1, we found inconsistencies in explanations to be an important unreliability

cue that participants often noticed. While the presence of inconsistencies is not some-

thing we control for or manipulate, we explore whether and how the natural incon-

sistencies that arose in LLM responses have effects on the DVs with a pre-registered

analysis. Specifically, we used analysis of variance (ANOVA) to compare the means

of DVs across three types of incorrect LLM responses: No explanation (N = 616),

consistent explanation (N = 461), and inconsistent explanation (N = 155), where

N indicates the number of instances for which participants received a given response

type. If there was a significant difference across response types, we conducted pairwise

comparisons with post-hoc Tukey tests. We only analyze responses with an incorrect

answer, as none of the responses with a correct answer contained inconsistencies (as

described in Section 6.4.1). We present the results in Figure 6.5.

For most DVs (all except SourceClick and Time) we find a significant difference

across response types. Overall, overreliance on incorrect answers is most prevalent

when participants receive consistent explanations, as evidenced by the highest agree-

ment with the LLM answer, confidence in their final answer, and ratings of justifica-

tion quality and actionability, as well as the lowest accuracy and likelihood of asking

follow-up questions. In comparison, when participants receive inconsistent explana-

tions, agreement is significantly lower (M = 69.7% vs. 83.3% p = .002), rating of

the LLM response’s justification quality is significantly lower (M = 5.13 vs. 5.59,

p = .028), while accuracy is significantly higher (M = 30.3% vs. 16.7%, p = .002).
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While our study materials did not allow us to investigate the effect of inconsistencies

when an LLM answer is correct, which may happen less naturally based on our obser-

vations, these results suggest that inconsistencies can help reduce overreliance

on incorrect answers induced by explanations.

Consistent with the quantitative results, 19 participants stated in their free-form

answers that they disagreed with Theta when “Theta’s responses were contradictory.”

For example, several participants wrote about how Theta provided a logically incon-

sistent response to the question “Do more than two thirds of South America’s popula-

tion live in Brazil?” (See Figure 6.2 for the response.) As one participant elaborated,

“The Brazilian and South American population answer contradicted itself. Two-thirds

would imply 66% but given the number of Brazilians compared to the total population

of South America given in the answer, the actual percentage is closer to 50%.”

Source clicking behavior

From our main analysis (Section 6.4.2), we did not find any significant effect on

when participants chose to click on the provided source links. We only found a

marginally significant main effect of explanation such that participants’ source click-

ing likelihood is lower when there is an explanation than not (M = 25.0% vs. 28.2%,

β = −.62, SE = .36, p = .086). However, there is high variance across individuals.

According to our tracking, 189 out of 308 participants never clicked on sources, 33 par-

ticipants clicked on sources in one task, 18 participants in two tasks, 23 participants

in three tasks, and 45 participants in all four tasks for which sources were provided.

To better understand participants’ source clicking behavior, we conducted a

pre-registered analysis to examine its relationship with other DVs. Specifically, we

used ANOVA to compare the means of DVs between instances in which participants

were provided sources but did not click on any (N = 914) and instances in which

participants were provided sources and clicked on one or more (N = 318). Among
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the latter, 164 are instances in which the LLM answer is correct and 154 are instances

in which the LLM answer is incorrect.

We find that when participants click on sources, accuracy is higher (M = 60.1%

vs. 49.2%, p < .001) and time on task is higher (M = 2.11 min vs. 1.08 min,

p < .001), while rating of the LLM response’s justification quality is lower (4.58

vs. 5.08, p < .001). The accuracy and time on task results are intuitive. The

sources in our study stimuli tended to provide accurate and relevant information (see

Section 6.4.1 for details), so when participants clicked on sources, they likely found

correct answers at the expense of spending more time on task. Indeed, we see that

source clicking was helpful when the LLM gave an incorrect answer. The increase in

accuracy is bigger when the LLM answer is incorrect (M = 37.0% vs. 24.2%) than

when the LLM answer is correct (M = 81.7% vs. 74.8%). For reference, when LLM

responses do not include sources, participants’ answer accuracy is M = 19.5% when

the LLM answer is incorrect and M = 72.7% when the LLM answer is correct.

There are multiple possible factors that might influence the finding that the rating

of justification quality is lower when participants have clicked on the provided sources.

Participants may have clicked on sources because they found the LLM response’s jus-

tification quality to be low, or their rating may have decreased after examining the

sources. Again breaking down the data into instances in which the LLM answer is

correct and those where it is incorrect, participants’ rating of the response’s justifi-

cation quality when they clicked on sources vs. not is M = 5.04 vs. 5.29 when the

LLM answer is correct and M = 4.08 vs. 4.87 when the LLM answer is incorrect.

Together, these results suggest engaging with the content of (accurate and rel-

evant) sources can be an effective way of improving decision outcomes. However,

the presence of explanation may reduce users’ natural tendency to examine sources,

especially when they find the explanation to be of high quality. It could be helpful
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to nudge users to pay more attention to sources by highlighting sources or placing

sources above explanations.

6.5 Discussion

6.5.1 Implications of findings

Explanations

In our studies, we found that explanations play an important role in shaping users’

reliance. In Study 1, we gained qualitative insights on how participants interpreted

and used explanations to judge the reliability of LLM answers. In Study 2, we ex-

amined the effects of the presence of an explanation, as well as its interaction with

other variables, and found that explanations increase reliance on both correct and

incorrect responses. This is consistent with prior findings in HCI that explanations

can increase overreliance [26, 120, 312, 400, 437], including explanations generated

by LLMs [299, 349]. It is also consistent with prior work in psychology, which finds

that explanations are often found compelling even when they contain little content

[133, 217] or content that experts judge irrelevant [158], and that effects of superfi-

cial cues on explanation quality are more severe when time and prior knowledge are

limited [159, 184]. In the absence of effort and expertise, users will inevitably rely on

superficial cues to explanation quality, such as fluency [375], a characteristic that LLM

explanations typically possess in spades. This suggests a potential tension in providing

LLM explanations to lay users: the properties that make such explanations intelli-

gible and compelling may be precisely those that lead to overreliance. As such, we

encourage LLM explanations to be evaluated and optimized for appropriate reliance,

in addition to other qualities such as fluency, justification quality, and satisfaction.

192



Sources

Our results offer some basis for optimism, however: sources helped reduce overre-

liance on incorrect answers and increase appropriate reliance on correct answers. One

possibility is that sources encouraged participants to engage in slow and careful Sys-

tem 2 thinking, instead of quick and automatic System 1 thinking [175, 176]. In our

study, participants spent significantly more time on task when provided with sources,

especially when the LLM’s answer was incorrect. The qualitative data also supports

this. Many participants wrote that they checked sources. Many also wrote that they

submitted a different answer from the LLM’s answer when it conflicted with the in-

formation in the sources. We emphasize, however, that the sources provided in Study

2 were all real and tended to provide accurate and relevant information. This is not

always the case. Recent work has found that popular LLM-infused applications fre-

quently generate statements that are not supported by sources [238] and sometimes

even generate fake sources [11]. If the provided sources are junk or just broken links,

then presumably they will not help foster appropriate reliance. They could potentially

even hurt by making the LLM response look more trustworthy, similar to how flawed

and meaningless explanations have been found to increase people’s trust and reliance

[112, 182, 334]. In addition to improving the quality of sources in LLM responses, fu-

ture work should explore different issues with sources (e.g., fake, unreliable, conflicting

sources and inaccurate summaries of sources), design choices (e.g., location of sources

and amount of preview), and their effects on people’s perceptions and behaviors.

When it comes to choosing between providing sources only and providing sources

and an explanation, there are benefits and drawbacks to each. When the LLM answer

is incorrect, participants’ accuracy is highest on responses with sources only (M =

31.8%), followed by responses with explanation and sources (M = 23.1%), neither

(M = 21.8%), and explanation only (M = 17.2%) — suggesting that providing

sources only is most effective at reducing overreliance on incorrect answers. However,
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it is not as effective at improving appropriate reliance when the LLM answer is correct.

Here, participants’ accuracy is highest on responses with explanation and sources

(M = 79.9%), followed by responses with explanation only (M = 78.2%), sources

only (M = 73.4%), and neither (M = 67.2%). In contexts where LLMs have much

higher accuracy than users, providing sources only can lead to lower overall accuracy

than providing sources and an explanation. Further, participants rated responses

with sources only lower in terms of justification quality and actionability, compared

to responses with sources and explanation, suggesting that people prefer the latter.

Inconsistencies and other unreliability cues

Finally, we found that LLM responses contain new forms of unreliability cues. Prior

research, in particular the work by Chen et al. [75], found that people identify AI mod-

els’ biases, inability to consider contexts or multiple features, and lower performance

on rare instances as cues of unreliability. In our studies, we identified other cues such

as inconsistencies in explanations and lack of explanation or sources — all of which are

related to the particular characteristics of LLMs. For example, some inconsistencies

occur due to the stochastic nature of LLMs: LLMs can generate different responses

for the same input, unlike deterministic AI models. Even within a single response,

inconsistencies occur because LLMs are not trained to generate only logically consis-

tent statements. The other cues are connected to LLMs’ natural language modality

and ability to handle a wide variety of tasks, which lead to responses with much more

diverse features and forms compared to classical AI models with fixed output spaces.

Intriguingly, we found positive effects of such unreliability cues when it comes

to reducing overreliance. In Study 1, participants who noticed unreliability cues

engaged with the LLM responses more thoroughly. In Study 2, participants relied less

on incorrect LLM responses when they were provided with explanations containing

inconsistencies than those without. These findings, along with prior findings on other
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unreliability cues (e.g., inconsistencies between multiple responses [222, 349]), suggest

that guiding people’s attention to these cues can be an effective approach to reducing

overreliance. For example, we could apply computational methods to automatically

detect inconsistencies (e.g., [94, 208]) then use highlighting to draw people’s attention

to the detected inconsistencies. Other interventions (e.g., expressing uncertainty,

displaying disclaimers, and encouraging source checking) could be applied jointly

for cases in which inconsistency detection is difficult or where LLM responses are

consistently inaccurate. We suggest future research to explore more thoroughly what

unreliability cues exist in LLM responses and how to design interventions that help

people notice and reason about these cues.

6.5.2 Explanation of the answer vs. Explanation of how the

LLM arrived at the Aaswer

Throughout the work, we have used the term explanation to refer to supporting

details in LLM responses that justify the LLM’s answer to the input question. This is

different from how the term is often used within the explainable AI community in that

we do not make any assumptions about the extent to which it faithfully describes the

way that the model arrived at its answer. We emphasize that faithfulness is extremely

difficult for users — or even model developers — to evaluate, especially without access

to the model’s internals. Evaluating the faithfulness of model explanations is an active

area of research [8, 21, 166, 404, 439].

Nevertheless, many participants in Study 1 interpreted ChatGPT’s responses as

including somewhat faithful explanations of how the system arrived at its answer,

especially when the responses had certain characteristics (P3, P6, P7, P8, P10, P11,

P14, P15, P16). For some, the critical characteristic was the presence of sources (P6,

P16). As P16 (high-knowledge, low-use) described, “I would think of the citation

itself as an explanation because it kind of implies ‘I’m giving you this information
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because it came from this source’ and then me as a human can evaluate that source.”

For others, it was the step-by-step form of responses, which are common for math

questions (P3, P7, P8, P14). After seeing them, P14 (low-knowledge, high-use) said,

“I think it’s very clear how did it [ChatGPT] provides me the answer.”

In contrast, three participants, all with high knowledge of LLMs, were strongly

opposed to the idea that ChatGPT could provide explanations of how it arrived at its

answers (P5, P12, P13). P5 (high-knowledge, low-use) stated that “it’s provably false

that ChatGPT’s responses provide a description of how it arrives at its answers,”

emphasizing that ChatGPT’s responses are “definitely and empirically not expla-

nations because there’s no reflection in the model.” Similarly, P12 (high-knowledge,

high-use) said they don’t think of ChatGPT as explaining anything to them, and that

ChatGPT was just “trained to provide answers that look like an explanation because

that’s what we would find most useful.” P4 (high-knowledge, low-use) shared this view

and emphasized that “there’s no way to interpret how the answer came from.” They

noted that the explanations ChatGPT offers describe “how a normal person would

reach the answer,” and are not explanations of how ChatGPT arrives at its answers.

In sum, while there was considerable variability between individuals, we found

that many participants, especially those without much knowledge of LLMs, viewed

ChatGPT’s responses as including somewhat faithful explanations for how the system

arrived at its answer. This raises a concern because first, again, there is no reliable way

for users or anyone to evaluate their faithfulness without access to the system’s inter-

nals, and second, recent work has found explanations from LLMs are often not faithful

to their process [251, 256, 378, 411, 439] and can easily be manipulated, e.g., to ratio-

nalize incorrect information [59, 300, 429]. Such assumptions can be strengthened by

the increasing anthropomorphization of LLMs and lead to inappropriate reliance [85,

342, 405]. We suggest future research to explore strategies for improving people’s un-

derstanding of LLMs [14, 246] and study how they are connected to reliance behaviors.
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6.5.3 Limitations

There are several limitations of our work that are worth reflecting on. First and

foremost, our studies were conducted in the context of objective question-answering

and may not generalize to other contexts of LLM use (e.g., writing, idea generation,

and task automation). We encourage the community to conduct more empirical

studies on how user reliance is shaped in various contexts.

Each of our studies has a different set of strengths and limitations. Study 1 was

a think-aloud study that offered descriptive examples of how users interpret and act

upon different LLM response features in a relatively natural setting. However, prior

work has pointed out that the set-up of a think-aloud study can cause people to

behave differently than they would otherwise [46, 126, 280]. For example, we saw a

much higher rate of source clicking in Study 1 (M = 63.8%) than in Study 2 (M =

25.8%) which was an online experiment. We also emphasize that the LLM response

features identified in Study 1 are not comprehensive. We suggest future work to

explore what other features influence users’ reliance and can help them succeed in

tasks despite inaccuracies from LLMs.

In Study 2, we employed a different research method (a controlled experiment),

prioritizing the generalizability of findings by controlling as many other variables

as possible. For example, in the experiment, participants saw exactly one response

from Theta, created in advance using the state-of-the-art LLM-infused applications

ChatGPT and Perplexity AI, instead of interacting with a real system in multiple

rounds. While participants referred to Theta as “AI” or “LLM” in the exit question-

naire (e.g., “I just trusted the AI when I didn’t know the answer already”), we did not

measure participants’ general perceptions of Theta or inquire about their experience.

Hence, it is more accurate to view Study 2 as a study of people’s perceptions and

behaviors around specific LLM responses rather than a study of people’s interactions

with LLMs. While showing one controlled LLM response is a commonly used method
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(e.g., [193, 222, 349]), people’s perceptions and behaviors may change over time,

meriting further studies in more interactive settings.

Additionally, we set Theta’s accuracy to be 50% which is significantly worse than

the state-of-the-art. While this choice allowed us to compare the effects of LLM

response features on relying on correct vs. incorrect answers in a balanced fashion,

future work should explore whether there are interaction effects between these

features and the LLM’s accuracy. There are also implications of our experimental

task, which was answering difficult factual questions (that less than 50% of pilot

study participants knew the answer to). We chose this task to simulate realistic

scenarios of people seeking answers to questions they don’t know the answer to.

However, it is possible that our findings may not generalize to tasks where people

have sufficient prior knowledge and can more deeply engage with the content of the

LLM responses. Finally, there are many LLM response features that we did not study

or control for (e.g., simplicity of explanations [242], quality of sources [321, 402],

and presence of jargon [91]). We encourage future work to explore different features

and methods to understand user interactions with LLMs, an emerging research area

whose importance will only grow with time.

6.6 Conclusion

We conducted two empirical studies to understand how different features of LLM

responses shape users’ reliance. We found that the presence of explanations increases

reliance on both correct and incorrect responses. However, we observed less reliance

on incorrect responses when sources are provided or when explanations exhibit incon-

sistencies. Our findings highlight the importance of evaluating LLM response features

with users before deployment. Our findings also suggest that providing (accurate and

relevant) sources and designing interventions that help users notice and reason about
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inconsistencies and other unreliability cues in explanations can be promising direc-

tions for fostering appropriate reliance on LLMs.

Acknowledgements

We foremost thank the participants for sharing their time and experiences. We also

thank the members of the Princeton Visual AI Lab, the Princeton HCI Lab, and

the Princeton Concepts & Cognition Lab, as well as the anonymous reviewers for

thoughtful feedback and discussion. We acknowledge support from the NSF Graduate

Research Fellowship Program (SK) and the Princeton SEAS Howard B. Wentz, Jr.

Junior Faculty Award (OR).

199



Chapter 7

Conclusion

This dissertation presented a series of human-centered evaluation studies conducted

to advance responsible development and deployment of AI technologies. First, it

demonstrated how to introduce human evaluation into areas dominated by automatic

evaluation such as explainable AI, and showed how insights from human evaluation

can re-orient the research and design of AI technologies (Chapter 2). Next, it illus-

trated the importance of context in evaluation by presenting insights from contextu-

alized studies with real users that cannot be gained from automatic evaluations or

non-contextualized studies with hypothetical users (Chapters 3 and 4). Finally, it pre-

sented careful studies of human-AI interaction that shed light on how users perceive

and act upon different features of AI technologies and contributed actionable recom-

mendations for fostering appropriate user trust and reliance on AI (Chapters 5 and 6).

In this chapter, I conclude the dissertation with a discussion of key implications,

practical recommendations, and future directions for advancing responsible AI.

7.1 Key implications

Always evaluate AI technologies before release. Evaluation is critical for as-

sessing effectiveness, identifying strengths and weaknesses, and making informed de-
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cisions about AI technologies (e.g., models, systems, and features). There have been

many instances where evaluation revisited assumptions and uncovered blind spots in

AI research and development. For example, our evaluation in Chapter 2 raised a

warning that responsible AI efforts, such as providing an explanation of an AI output

to help people understand and make better decisions about the output, may backfire

and have unintended negative effects (e.g., make an incorrect AI output seem cor-

rect). Next, our evaluation in Chapter 5 revealed that language choices matter: even

seemingly subtle choices such as the perspective in which uncertainty is expressed in

AI outputs (e.g., first-person vs. general perspective) shaped how people perceive and

act upon AI outputs. To minimize unexpected effects of AI technologies, evaluation

should be a priority and not an afterthought in AI research and development.

Consider what different evaluation methods can capture and choose

appropriately. How should evaluation be done? This is the million dollar question

as there is no one-size-fits-all method for evaluation. Different methods have differ-

ent strengths and weaknesses and suit different purposes and contexts. The method

should be chosen based on the goal of the evaluation (what one hopes to learn) and

available resources (money, time, effort, and expertise). Poor choice of method and

over-extrapolation of results can misguide AI research and development. Many stud-

ies, including those presented in Chapter 2, have revealed that automatic evaluation

metrics, proxy tasks, and subjective measures can be misleading in evaluating AI

technologies, especially their usefulness to users [57, 160, 190]. In another exam-

ple (Chapter 5), we found a tension between self-report and behavioral measures

in evaluating LLM responses: LLM responses with explanations were rated higher

(measured via self-report) but also increased overreliance (measured behaviorally),

suggesting use of both types of measures and a careful balance of optimization ob-

jectives (e.g., user preference vs. appropriate reliance). Overall, embracing diverse

evaluation methods will help choose the appropriate method for each situation.
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7.2 Practical recommendations

Conducting human-centered evaluation is important, but how we do it matters as

much. A well-conducted evaluation can provide valuable insights, but a poorly con-

ducted one can be misleading [63]. Here I share a set of practical recommendations

for future researchers based on lessons I learned from my dissertation work.

Clearly state definitions and explain operationalizations of constructs.

Evaluation of AI technologies’ performance and impact in human-AI interaction of-

ten involves measuring complex constructs. One example of such construct that has

gained a lot of traction in recent years is trust. However, recent surveys of trust

in AI research [379, 386] note that many empirical work do not state a definition

of trust or do not explain why they chose a specific operationalization. This makes

it difficult for researchers to assess the validity of the work (e.g., whether there is

a mismatch between the theoretical understanding of the construct and the opera-

tionalization [165]) and to accurately interpret and compare the results (e.g., whether

a proposed approach is more effective than another approach studied in a different

work). Clearly stating and explaining the chosen definition and operationalization

will reduce unnecessary confusion and increase the rigor of the field.

Carefully design tasks and instructions. Designing doable tasks and pro-

viding clear instructions to human participants (evaluators) are challenging and im-

portant endeavors. Prior research has found that poorly designed tasks and unclear

instructions hurt not only the results quality but also the relationship between re-

questers and workers in crowdsourced studies [196, 264, 290, 415]. Tasks (including

instructions) should be designed in consideration of participants’ backgrounds such

as AI expertise and language and cultural context. In general, tasks should be clear

(i.e., easy to understand and do) and concise (i.e., only contain information necessary

for completing the task). Concrete recommendations include: (1) using everyday

non-technical terms (e.g., “photo” instead of “image” and “developed to recognize
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scenes” instead of “trained on a dataset to perform scene classification”); (2) simpli-

fying technical content if necessary (e.g., in Chapter 2, one AI explanation we wanted

to evaluate was a complex decision tree with 511 decision nodes and up to 10 de-

cision steps which were too overwhelming for participants. To make the evaluation

tractable, we significantly simplified the AI explanation and had participants evaluate

only the final two decision steps of the explanation); and (3) designing introduction

materials (e.g., in the same example, we helped participants understand decision trees

by walking through a simple decision tree and presenting warm up exercises). Overall,

well-designed tasks and instructions will lead to higher-quality results.

Employ sufficient data quality checks when using crowdsourcing. In AI

research and development, crowdsourcing platforms (e.g., Amazon Mechanical Turk

and Prolific) are commonly used for creating datasets, evaluating models, and running

user studies as they provide access to a large pool of workers who can complete tasks

and participate in studies. Crowdsourcing also has the benefit of being time- and

cost-effective than traditional in-person recruitment methods. However, recent work

suggests that LLMs are widely used in crowd work, which could threaten the validity

of human judgment and behavior data obtained from crowdsourcing platforms [388].

It is more important than ever to employ sufficient data quality checks to filter out

data that is likely compromised (e.g., produced using LLMs or from bots). In my

experience (Chapters 5 and 6), the following data quality checks (exclusion criteria)

have been useful : (1) answers to honeypot questions that are invisible to people but

visible to bots; (2) same answers to all questions or tasks; (3) too short response

time; (4) failed attention checks, especially questions about the main task; and (5)

free-form answers that are clearly off-topic (e.g., answers are irrelevant, gibberish,

spam) or identical across multiple responses. Using a combination of these checks and

setting appropriate qualification criteria (e.g., minimum approval rating and number

of completed tasks/studies on the platform) may help obtain quality human judgment
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and behavior data from crowdsourcing platforms. See the work by Bylinskii et al.

[63] and Schuff et al. [337] for additional practical recommendations.

7.3 Future research directions

There is much more that needs to be done for advancing responsible AI. In closing, I

highlight several future research directions for the community.

Evaluate AI systems in interaction contexts. While AI systems are devel-

oped to interact with people, they are still primarily evaluated on static benchmarks.

This creates a mismatch: AI systems that excel on these benchmarks often fail to

meet user needs in real-world interactions. To reduce this mismatch, we need to eval-

uate AI systems in context and in interactive settings. Concretely, future research

could pursue: designing evaluation metrics that capture user needs and contexts; de-

veloping new tools for collecting and analyzing rich human-AI interaction data; and

partnering with organizations to conduct evaluations with real users. Together, these

efforts will bring AI evaluation closer to real-world interaction contexts.

Incorporate participatory approaches to AI development and evalua-

tion. Given the broad impact of AI in society, we need people with comparably

broad sets of experiences and perspectives shaping its development. There are many

benefits to broadening participation. For example, in Chapter 3, we observed users

pointing out blind spots in state-of-the-art explainable AI methods and proposing

solutions. Building on recent successes in participatory AI design [423, 431], we can

innovate new ways for participatory AI development and evaluation. For example,

we can explore creating fine-tuning datasets and designing evaluation metrics with

users and those impacted by AI to incorporate their perspectives, while carefully

considering the benefits and harms from the participation.
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Increase public understanding of AI. Responsible AI is not only about tech-

nological advancements. Public excitement and fear around AI are currently high,

and they are often fueled by misconceptions. Increasing public understanding of AI

is crucial for responsible adoption and use of AI. It would be important to identify

common misconceptions people have about AI, develop learning materials that cor-

rect these misconceptions, and study how people’s understanding of AI shape their

perceptions and interactions, building on the AI literacy and learning sciences liter-

ature [246, 363]. This line of work will provide implications for education and policy

on how to teach and talk about widely-deployed AI technologies.

Overall, responsible AI efforts must take place at various levels. They should

also be interdisciplinary as AI systems are complex and continuously evolving so-

ciotechnical systems. Responsible AI efforts would be most effective when they fully

engage with the complexity and the messiness of real-world human-AI interactions

by integrating perspectives from AI, HCI, and other fields.
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Appendix A

Supplementary material for

Chapter 2

A.1 Details on the evaluation tasks

Agreement task. For each image, we show one model prediction-explanation pair

and ask the participants how confident they are in the model’s prediction. We show 10

images in total (5 correct, 5 incorrect predictions in random order). Participants rate

their confidence in the given prediction on a 4-point scale (1: confident prediction

is incorrect, 2: somewhat confident prediction is incorrect, 3: somewhat confident

prediction is correct, 4: confident prediction is correct).

Distinction task. For each image, we show four model prediction-explanation pairs

for it (in random order) and ask the participants to identify the correct prediction

based on the explanations. For GradCAM [339] and BagNet [52], participants are

tasked with 10 sample images (5 correct and 5 incorrect predictions), each of which

is shown with four heatmaps. On correctly predicted samples, the four heatmaps

correspond to the top-4 predicted classes. On incorrectly predicted ones, we show

heatmaps for the top-3 predicted classes and the heatmap of the ground-truth class.
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For ProtoPNet [72], we show four correctly predicted samples in total. Each sample

is presented with four explanations corresponding to the top-4 predicted classes. We

reduce the total number of samples and focus on correctly predicted samples due to

the complexity of the ProtoPNet explanations; even with this change, the ProtoPNet

study duration is twice as long as that of GradCAM and BagNet. For ProtoTree [285],

we show 10 correctly predicted samples in total and ask participants to select the

correct decisions on the two final nodes which lead to four (22) different predictions.

Additionally for ProtoPNet [72] and ProtoTree [285], we ask participants to rate

the similarity of prototype-region pairs in both tasks using a 4-point Likert scale (1:

not similar, 2: somewhat not similar, 3: somewhat similar, 4: similar).

A.2 Details on the evaluated interpretability

methods

GradCAM [339]. For our ImageNet [324] studies, we generate GradCAM explana-

tions for the ResNet50 [148] model in the torchvision library which achieves 76.1%

classification accuracy. For our CUB studies, we generate GradCAM explanations

for a ResNet50 [148] model we trained on the CUB [391] training set. This model

achieves 81.0% accuracy on the CUB test set. We used the code by Gildenblat et

al. [134] to generate GradCAM visualizations.1 For the agreement task, we gener-

ate the GradCAM heatmap for the model prediction and normalize it into the [0, 1]

range. For the distinction task, we generate four GradCAM heatmaps for each image:

for correct predictions, we generate heatmaps for the top-4 predictions; for incorrect

predictions, we generate heatmaps for the top-3 predictions and for the ground-truth

class. We identify the local minimum and maximum of the four heatmaps, and then

normalize the heatmaps into the [0, 1] range. This way, we preserve the intensity

1https://github.com/jacobgil/pytorch-grad-cam
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difference between heatmaps for different predictions. See Figure A.1 for an example

set of GradCAM explanations.

BagNet [52]. For our ImageNet studies, we use the BagNet33 model trained by

the original authors which achieves 66.7% accuracy on ImageNet classification. For

our CUB studies, we train a BagNet33 model on the CUB training set. This model

achieves 74.2% accuracy on the CUB test set. For the agreement task, we use the

authors’ code as is and normalize each heatmap individually by clipping the values

above the 99th percentile.2 On the other hand, for the distinction task, we normalize

the four heatmaps together so that we preserve the intensity difference. See Figure A.2

for an example set of BagNet explanations.

ProtoPNet [72]. For ProtoPNet, we used the ResNet34-based model trained by

Hoffmann et al. [154]. We pruned 331 prototypes from this model to improve inter-

pretability. The resulting model has 1669 prototypes and achieves 79.9% accuracy on

the CUB [391] test set. For generating explanations, we used the code by the original

authors with some modifications which we describe below.3 In our studies, given an

explanation, participants are asked to rate the similarity of each prototype-region

pair, then either rate the level of confidence in the prediction’s correctness (agree-

ment) or select the correct class (distinction). To make ProtoPNet’s explanations

more suitable for these tasks, we made the following modifications to the original

explanation form.

2https://github.com/wielandbrendel/bag-of-local-features-models
3https://github.com/cfchen-duke/ProtoPNet

Figure A.1: GradCAM explanations shown in the distinction task.
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• The ProtoPNet model calculates evidence for all classes using the learned proto-

types, then predicts the class with the highest evidence. However, we deemed it is

unrealistic to ask users to review explanations for all 200 bird classes in CUB. Hence,

we only present explanations for one (agreement) or four (distinction) classes and

ask users to examine them.

• The original explanation (Figure A.3 left) shows activation maps, similarity scores,

class connection weights, and the total class evidence. In our version (Figure A.3

right) we remove them as we seek to investigate what participants rate as similar

and not.

• In the original explanation, prototypes are presented in the order of highest to

lowest similarity. In ours, we randomly shuffle the order of prototypes because we

don’t want to skew the participants’ region-prototype similarity ratings.

ProtoTree [285]. For ProtoTree, we used the model trained by the original authors

which achieves 81.7% accuracy on the CUB [391] test set. This model is a pruned

tree of depth 10 and 511 nodes. We used the authors’ code to generate explanations

with some modifications we describe below.4

• Same as what we did for ProtoPNet explanations, we removed the similarity scores

as we seek to investigate what participants rate as similar and not.

• For the local explanation, we converted the horizontal explanation (Figure A.4)

into a vertical one (Figure A.5). A vertical explanation is a better representation

of how the model reasons, as the model starts from the root node and proceeds

down the tree until it reaches one of the bottom leaves. Further, it is easier for the

participants to examine the explanation by scrolling up and down.

4https://github.com/M-Nauta/ProtoTree
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Figure A.2: BagNet explanations shown in the distinction task.

Figure A.3: ProtoPNet original and modified explanations. The original ex-
planation (left) taken from the original paper [72] contains details such as activation
maps, similarity scores, and class connection weights. In our version (right), we re-
move these to abstract away the complexities and have the participants focus on
examining the similarity between prototypes and their matched image regions.
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Figure A.4: ProtoTree original explanation. We show the original explanation
displayed in Fig. 9 of the original paper [285]. See Figure A.5 for our modified
explanation.

Figure A.5: ProtoTree modified explanation. See Figure A.4 for the original
explanation.
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A.3 Details on the human studies

We ran our study through Human Intelligence Tasks (HITs) deployed on Amazon

Mechanical Turk (AMT). We recruited participants who are US-based, have done

over 1000 HITs, and have prior approval rate of at least 98%. For each study, we

deployed 10 HITs, each with a different set of input images and explanations. To

reduce the variance with respect to the input, we had 5 participants complete each

HIT, so each study had 50 participants. Participants were compensated based on the

state-level minimum wage of $12/hr.

The demographic distribution was: man 60%, woman 38%, non-binary 1%,

no gender reported 1%; White 74%, Black/African American 9%, Asian 7%, no

race/ethnicity reported 7%, Hispanic/Latino/Spanish Origin of any race 2%, Amer-

ican Indian/Alaska Native 1%, Native Hawaiian/Other Pacific Islander 0%. The

self-reported machine learning experience was 2.5 ± 1.0, between “2: have heard

about...” and “3: know the basics...” The average study duration was 6.9 ± 3.5

minutes for GradCAM, 6.6 ± 3.5 for BagNet, 13.6 ± 6.2 for ProtoPNet, and 10.4 ±

3.1 for ProtoTree.

A.4 Additional results and analyses

Agreement study results with vs. without example images

In Chapter 2, we described the results of our agreement study. Here we provide

additional results.

For GradCAM and BagNet, we run another version of the agreement study where

we show three example images from the predicted class, in addition to the test image,

prediction, and heatmap (see Figure A.6). Since ProtoPNet and ProtoTree expla-

nations consist of source images of the learned prototypes, we take this measure to
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provide similar supplementary information for GradCAM and BagNet. As expected,

participants improve on the task when they see example images from the predicted

class (5.3% overall improvement for GradCAM, 7.1% for BagNet). However, even

with the help of example images, participants tend to believe in incorrect predictions,

which suggests that incorrect top-1 predictions from high-performance models such

as ResNet50 and BagNet are oftentimes convincing. Between CUB and ImageNet,

task accuracy is overall higher on CUB, but both yield similar insights. See Table A.1

for full results.

Analysis with automatic evaluation metrics

In Chapter 2, we briefly summarized our analysis with automatic evaluation metrics.

Here we discuss the results in more detail.

We further analyzed GradCAM heatmaps set using three automatic evaluation

metrics: pointing game [432], energy-based pointing game (energy game) [396],

Figure A.6: BagNet agreement study input with example images. For the
study version with example images, we additionally show three example images from
the predicted class (highlighted in the blue box).
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Table A.1: Agreement study results with vs. without examples. For each
study, we show mean accuracy, standard deviation of the participants’ performance,
and mean confidence rating in parentheses. Italics denotes methods with accuracy
not statistically significantly different from 50% random chance (p > 0.05); bold
denotes the highest performing method in each group. In all studies, participants
leaned towards believing that model predictions are correct when provided explana-
tions, regardless of if they are actually correct. For example, for GradCAM on CUB,
participants thought 72.4% of correct predictions were correct and 100−32.8 = 67.2%
of incorrect predictions were correct. These results reveal an issue of confirmation
bias. Comparing results with vs. without example images from the predicted class,
participants improve on the task when they see examples, but still tend to believe in
incorrect predictions. See Appendix A.4 for a discussion.

CUB GradCAM [339] w/ examples BagNet [52] w/ examples
Correct 72.4% ± 21.5 (2.9) 83.2% ± 15.7 (3.3) 75.6% ± 23.4 (3.0) 83.6% ± 17.3 (3.3)
Incorrect 32.8% ± 24.3 (2.8) 36.8% ± 22.8 (2.8) 42.4% ± 28.7 (2.7) 44.4% ± 30.5 (2.6)
ImageNet GradCAM [339] w/ examples BagNet [52] w/ examples
Correct 70.8% ± 26.6 (2.9) 78.4% ± 25.6 (3.2) 66.0% ± 27.2 (2.8) 77.2% ± 23.3 (3.2)
Incorrect 44.8% ± 31.6 (2.7) 43.6% ± 32.4 (2.6) 35.6% ± 26.9 (2.7) 42.8% ± 32.7 (2.6)

and intersection-over-union (IoU) [441]. Pointing game considers a heatmap cor-

rect when its highest-intensity point lies inside the segmentation/bounding-box

annotation. Energy game calculates how much energy in a heatmap falls inside the

segmentation/bounding-box annotation. IoU captures the amount of overlap between

a binarized heatmap (according to some threshold) and the segmentation/bounding-

box annotation. For all three metrics, higher values indicate better localization

quality.

We evaluate up to three GradCAM explanations per image, all using the same

segmentation/bounding-box annotation for the ground-truth class: heatmaps for the

ground-truth class, predicted class, and class with the second-highest score. Results

are summarized in Table A.2. For CUB heatmaps, we calculate the three metrics on

the entire test set (top table). For ImageNet heatmaps, we calculate the metrics on

5,000 randomly sampled validation images. Since ImageNet images sometimes have

multiple bounding box annotations, we report results evaluated with one bounding

box that yields the best result (middle table) and results evaluated with the union

of bounding boxes (bottom table). We find that all three metrics are highest on the
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ground-truth/predicted class heatmaps for correctly predicted samples. However, we

find that these metrics are also high for other heatmaps, even when they are for wrong

classes.

Next, we calculate these metrics on images/heatmaps we showed the participants

and analyze our human study results. In the agreement study, we find near-zero

correlation between participants’ confidence in the model prediction and localization

quality of heatmaps. In the distinction study, we also do not see meaningful rela-

tionships between participants’ choices and these automatic metrics, possibly because

all four heatmaps have similar localization quality. These observations are consistent

with the findings of [117, 287], i.e., automatic metrics poorly correlate with human

performance in post-hoc attribution heatmap evaluation. Overall, our analysis reveals

a limitation of automatic metrics.

Similarity judgment of humans vs. prototype-based models

In Chapter 2, we quantified the gap between prototype-based models and human

users’ notion of similarity. Here we show a plot of participant vs. ProtoPNet pro-

totype similarity rating (Figure A.7). There is no significant negative correlation

between the two. This result suggests a gap between ProtoPNet and human judg-

ments of similarity.

Nonetheless, we find that participants are consistent in their similarity ratings

and decisions. When examining ProtoPNet and ProtoTree explanations, on average

participants assign higher similarity ratings to prototypes of the class they select to

be correct (2.9 out of 4 for both ProtoPNet agreement and distinction tasks, 2.4 for

ProtoTree agreement) and lower similarity ratings to prototypes of the class they

select to be incorrect (2.0 and 2.1 for ProtoPNet agreement and distinction, 2.0 for

ProtoTree agreement). The similarity ratings between the two groups are statistically

significantly different in all studies. This suggests that participants understand how
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Table A.2: Evaluation of GradCAM heatmaps using automatic metrics.
We report the mean and standard deviation of three automatic evaluation metrics
calculated on heatmaps for the ground-truth class, predicted class, and class with the
second-highest score. All three metrics are highest on the ground-truth/predicted
class heatmaps for correctly predicted samples. However, these metrics are also high
for other heatmaps, even when they are for wrong classes.

CUB [391] heatmaps evaluated with the segmentation mask
Prediction Class Pointing game [432] Energy game [396] IoU [441]

Correct
GT/Predicted 0.92 ± 0.27 0.12 ± 0.07 0.38 ± 0.15
Second-highest 0.74 ± 0.44 0.09 ± 0.06 0.24 ± 0.15

Incorrect
GT 0.73 ± 0.45 0.08 ± 0.06 0.23 ± 0.16

Predicted 0.83 ± 0.37 0.09 ± 0.06 0.29 ± 0.15
Second-highest 0.80 ± 0.40 0.09 ± 0.06 0.26 ± 0.15

ImageNet [324] heatmaps evaluated with the bounding box that yields the best result
Prediction Class Pointing game [432] Energy game [396] IoU [441]

Correct
GT/Predicted 0.95 ± 0.22 0.27 ± 0.13 0.60 ± 0.28
Second-highest 0.93 ± 0.26 0.26 ± 0.13 0.60 ± 0.27

Incorrect
GT 0.91 ± 0.29 0.23 ± 0.14 0.52 ± 0.31

Predicted 0.82 ± 0.38 0.22 ± 0.15 0.52 ± 0.33
Second-highest 0.84 ± 0.37 0.23 ± 0.15 0.52 ± 0.33

ImageNet [324] heatmaps evaluated with the union of the bounding boxes
Prediction Class Pointing game [432] Energy game [396] IoU [441]

Correct
GT/Predicted 0.95 ± 0.22 0.29 ± 0.13 0.65 ± 0.26
Second-highest 0.93 ± 0.26 0.28 ± 0.13 0.64 ± 0.26

Incorrect
GT 0.91 ± 0.29 0.24 ± 0.14 0.56 ± 0.30

Predicted 0.82 ± 0.38 0.24 ± 0.15 0.56 ± 0.32
Second-highest 0.84 ± 0.37 0.24 ± 0.15 0.56 ± 0.32

the model reasons (i.e., they predict the bird class whose prototypes appear most

similar to the given photo).
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Figure A.7: Participant vs. ProtoPNet prototype similarity rating. There
exists a gap between ProtoPNet’s similarity scores and human judgments of similarity
(Spearman’s ρ = −0.25, p = 0.49 for distinction; ρ = −0.52, p = 0.12 for agreement).

Subjective evaluation results

In Chapter 2, we summarized our subjective evaluation results. Here we provide the

full results.

In Table A.3, we report the participants’ self-rated level of understanding of the

given model’s reasoning process. Overall, the participants rated their level of under-

standing between 3 (fair) and 4 (good). Interestingly, we find that the rating tends

to decrease after the participants see their task performance. Several participants

indicated that their performance was lower than what they expected: “I thought I

would do a bit better!”, “my score wasn’t as high as I would have liked”, “I was

surprised that my score was not very much higher than random guessing. I thought

I had a good idea of the model, especially making judgements about the amount of

positive and negative evidence, but it seems I did not.” No one suggested the oppo-

site. This trend suggests that participants might have been disappointment in their

task performance, which in turn led them to lower their self-rated level of method

understanding.
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Table A.3: Participants’ self-rated level of method understanding. We re-
port the mean and standard deviation of the participants’ self-rating of their method
understanding. Participants provide ratings three times: after reading about the
method (post-intro), after completing the task (post-task), and after learning about
their task performance (post-results). The rating tends to decrease after the partici-
pants see their task performance (p < 0.05).

Dataset Method Study Post-intro Post-task Post-results

CUB [391]

GradCAM [339]

Agreement 3.7± 0.9 3.8± 0.9 3.3± 1.1
Agreement w/ examples 3.7± 1.0 3.9± 0.7 3.4± 1.0
Distinction 3.4± 1.0 3.5± 1.2 3.6± 0.8

BagNet [52]
Agreement 3.5± 1.0 3.7± 0.8 3.3± 1.1
Agreement w/ examples 3.7± 0.8 3.9± 0.8 3.6± 1.0
Distinction 3.8± 0.7 4.0± 0.8 3.9± 0.8

ProtoPNet [72]
Agreement 3.9± 0.8 4.0± 0.8 3.7± 0.8
Distinction 4.1± 0.8 3.9± 0.8 3.7± 1.1

ProtoTree [285]
Agreement 3.7± 0.8 3.7± 1.0 3.4± 0.8
Agreement (tree) 3.7± 0.7 3.5± 0.9 3.2± 1.1
Distinction 3.4± 1.0 3.6± 1.1 3.3± 1.2

ImageNet [324]

GradCAM [339]

Agreement 3.7± 0.9 3.9± 0.9 3.0± 1.0
Agreement w/ examples 3.4± 0.8 3.7± 0.8 3.5± 0.9
Distinction 3.9± 0.9 3.7± 1.0 3.7± 1.0
Distinction w/ labels 3.9± 0.9 3.8± 1.0 3.8± 0.9

BagNet [52]

Agreement 3.7± 0.8 3.9± 0.7 3.4± 1.0
Agreement w/ examples 3.8± 0.9 3.9± 0.9 3.3± 1.0
Distinction 3.9± 0.8 3.9± 0.8 3.8± 1.0
Distinction w/ labels 3.8± 0.9 4.0± 0.8 3.8± 0.8

Mean across all studies 3.7± 0.9 3.8± 0.9 3.5± 1.0
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Interpretability-accuracy tradeoff results

In Chapter 2, we summarized our interpretability-accuracy tradeoff study results.

Here we provide more details.

In Table A.4 and Figure A.8, we show the full results of our interpretability-

accuracy tradeoff study. We report the accuracy of the evaluated interpretable model

and the minimum accuracy of a baseline model that participants require in order

to use it over the model with explanations under different risk settings. Across all

studies, we find that participants require the baseline model to have higher accu-

racy than the evaluated interpretable model, and input a higher accuracy require-

ment for higher-risk settings. On average, participants require the baseline model

to have +6.2% higher accuracy for low-risk (e.g., bird species recognition for scien-

tific or educational purposes), +8.2% for medium-risk (e.g., object recognition for

automatic grocery checkout), and +10.9% for high-risk (e.g., scene understanding for

autonomous driving) settings.

We observe this trend in the participants’ written responses as well. Most partici-

pants write that they would use the baseline model only when it has higher accuracy

than the evaluated interpretable model: “I would need the black box model to give

me a nice boost in accuracy, or I would just stick to the bagnet model, since it is

pretty accurate.” On the contrary, participants exhibit different levels of desire for

interpretability. Some deem interpretability as important: “Understanding how a

prediction works is important. For me to accept a model with no explanations, the

level of accuracy needs to be higher”, “I prefer to understand how models work, so the

black box model has to be significantly better than the other model for me to use it.

As the stakes become higher, I want its accuracy to be higher because there’s no way

for me to question or check its progress if it’s wrong.” Other participants willingly

tradeoff interpretability for accuracy: “I don’t need to know how it works. So, as

long as it’s marginally better, it should be used”, “I don’t care about not having an
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Table A.4: Interpretability-accuracy tradeoff results. We report the mean and
standard deviation of the additional accuracy participants require for the baseline
model, to use it over the model with explanations. For example in the GradCAM
agreement study with CUB, participants require the baseline model to have +5.6% ac-
curacy beyond the model that comes with GradCAM explanations and achieves 81.0%
accuracy, in the low-risk setting. See Figure A.8 for a visualization of the results.

Dataset Method Study Orig Low-risk Med-risk High-risk

CUB [391]

GradCAM [339]

Agreement

81.0

+5.6 (±6.9) +6.2 (±5.7) +7.7 (±7.0)
Agreement w/ examples +4.2 (±6.1) +5.7 (±5.7) +7.7 (±7.5)
Distinction +2.9 (±6.9) +4.5 (±5.2) +8.1 (±6.9)

BagNet [52]

Agreement

74.2

+6.8 (±7.9) +7.8 (±8.1) +12.3 (±9.2)
Agreement w/ examples +6.1 (±7.1) +8.1 (±6.3) +10.7 (±9.2)
Distinction +7.0 (±8.1) +8.8 (±7.4) +8.4 (±8.4)

ProtoPNet [72]
Agreement

79.9
+5.8 (±6.6) +7.8 (±4.9) +9.4 (±6.6)

Distinction +4.1 (±7.9) +6.1 (±6.4) +9.7 (±7.1)

ProtoTree [285]

Agreement

81.7

+3.8 (±6.5) +4.2 (±6.3) +5.1 (±6.5)
Agreement (tree) +3.7 (±5.5) +5.8 (±5.1) +6.7 (±6.6)
Distinction +5.1 (±5.7) +6.4 (±5.8) +9.2 (±6.2)

ImageNet [324]

GradCAM [339]

Agreement

76.1

+6.3 (±7.6) +8.1 (±8.6) +11.8 (±10.7)
Agreement w/ examples +4.8 (±6.8) +8.6 (±7.6) +11.4 (±10.8)
Distinction +5.3 (±7.3) +9.8 (±6.7) +12.4 (±8.6)
Distinction w/ labels +7.6 (±7.7) +9.3 (±7.9) +13.2 (±9.0)

BagNet [52]

Agreement

66.7

+9.9 (±7.5) +14.1 (±9.5) +17.5 (±11.1)
Agreement w/ examples +9.7 (±8.5) +13.2 (±10.4) +17.6 (±13.0)
Distinction +7.9 (±9.3) +9.6 (±9.2) +11.2 (±11.2)
Distinction w/ labels +11.4 (±9.2) +12.4 (±10.4) +16.6 (±11.6)

Mean across all studies +6.2 (±7.7) +8.2 (±7.9) +10.9 (±9.7)

explanation, so if the accuracy of a different model has just a 1% improvement in

performance then I would choose the better performing model.”

Nonetheless most participants express a need for higher-accuracy models in higher-

risk settings: “The higher the risk, the more accurate I need it to be in order to feel

confident using it”, “If I were to choose to use a model that did not provide reasoning

for me to utilize in evaluating how the decision was made I would need to know

that the model would give me significantly better results, especially in a high-risk

scenario as described above, but even in the medium risk setting, being able to asses

the reasoning of the model is an invaluable tool and I would only be willing to give

it up for significant increases in accuracy.”
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Figure A.8: Visualization of the interpretability-accuracy tradeoff results.
This plot shows that participants desire higher accuracies for the baseline model,
especially in higher-risk settings. See Table A.4 for the full results.
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A.5 Simple decision tree used for explaining Pro-

toTree

One additional challenge of evaluating the ProtoTree model is that participants may

not be familiar with decision trees. To mitigate this challenge, we introduce a simple

decision tree model for fruit classification before introducing ProtoTree. This simple

decision tree model takes in an input image and makes an output classification (Class

A, B, C, D, E) based on three decision nodes. We first walk through the participants

through an example. We then present two warm-up exercises so that the participants

can become more familiar with decision trees. When the participants submit their an-

swers, we also provide the correct answer and the reason for it. Participants achieved

86.5% performance on this task, implying that the low task accuracy for ProtoTree

is not due to a lack of comprehension of decision trees. See Figure A.9 for the UI.
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Figure A.9: A simple decision example. We use this model to introduce par-
ticipants to decision trees before explaining the more complex ProtoTree. See Ap-
pendix A.5 for details.

223



A.6 UI snapshots

In Chapter 2, we outlined our study design. Here we provide snapshots of our study

UIs in the following order.

1. Study introduction. For each participant, we first briefly introduce the study

and receive their informed consent. The consent form was approved by the IRB and

acknowledges that participation is voluntary, refusal to participate will involve no

penalty or loss of benefits, etc. See Figure A.10.

2. Demographics and background. To help future researchers calibrate our

results and do proper comparison, we request optional demographic data regarding

gender identity, race and ethnicity. We also ask the participant’s experience with

machine learning. See Figure A.11.

3. Method introduction. We introduce each interpretability method/model in

simple terms. See Figure A.12.

4. Task preview and first subjective evaluation. To encourage participants

to carefully read the method explanation, we show a preview of the task they will

complete along with a correct and incorrect prediction. Participants then answer

their first subjective evaluation question. In Figure A.13 we shown an example from

the ProtoPNet agreement study.

5. Task. Participants then proceed onto the main task. We show the UI for the

following 8 studies:

• GradCAM distinction (Figure A.14)

• GradCAM agreement (Figure A.15)

• Bagnet distinction (Figure A.16)

• Bagnet agreement (Figure A.17)

• ProtoPNet distinction (Figure A.18)
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• ProtoPNet agreement (Figure A.19)

• ProtoTree distinction (Figure A.20)

• ProtoTree agreement (Figure A.21)

6. Second and third subjective evaluation. After the task, participants

complete their second subjective evaluation question. We then disclose their task

performance and ask the third subjective evaluation question. These questions al-

low us to investigate if the participants’ self-rated level of method understanding

undergoes any changes throughout the study. See Figure A.22.

7. Interpretability-accuracy tradeoff. Finally, we investigate the trade-

off participants are willing to make when comparing the evaluated interpretable

model against a baseline model that doesn’t come with any explanation. We present

three scenarios to the participants: low-risk (e.g., scientific or educational purposes),

medium-risk (e.g., object recognition for automatic grocery checkout), and high-risk

(e.g., scene understanding for self-driving cars). We then ask them to input the

minimum accuracy of a baseline model that would convince them to use the base-

line model over the model that comes with explanations and briefly describe their

reasoning. See Figure A.23.
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Figure A.10: 1. Study introduction.

Figure A.11: 2. Demographics and background.
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Figure A.12: 3. Method introduction. BagNet (top left), GradCAM (top right),
ProtoPNet (bottom left), ProtoTree (bottom right).
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Figure A.13: 4. Task preview and first subjective evaluation.
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Figure A.14: 5. Task: GradCAM distinction.

Figure A.15: 5. Task: GradCAM agreement.
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Figure A.16: 5. Task: BagNet distinction.

Figure A.17: 5. Task: BagNet agreement.
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Figure A.18: 5. Task: ProtoPNet distinction.
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Figure A.19: 5. Task: ProtoPNet agreement.
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Figure A.20: 5. Task: ProtoTree distinction.
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Figure A.21: 5. Task: ProtoTree agreement.
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Figure A.22: 6. Second and third subjective evaluation.

Figure A.23: 7. Interpretability-accuracy tradeoff.
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Appendix B

Supplementary material for

Chapter 3

B.1 Interview protocol

We used the following script to conduct our semi-structured interviews.

Part 1: Context

Domain and AI Background

1. How would you describe your knowledge of birds?

2. How would you describe your knowledge of machine learning and artificial in-

telligence?

Use of app

1. Which features of Merlin do you use among Bird ID, Photo ID, Sound ID,

Explore Birds? Why do you not use features XYZ?

2. For what tasks do you use the app?
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3. How successful are you at accomplishing those tasks?

4. In what scenarios or circumstances do you decide to use the app?

Stakes in use

1. What do you gain when Merlin is successful? What do you lose when Merlin is

unsuccessful?

2. How important is it to you that Merlin gets each and every prediction correct?

Part 2: XAI needs and more

As you may know, Merlin uses machine learning-based AI models to identify birds in

photos and audio recordings. We will now ask questions about your experiences and

thoughts on Merlin’s AI models.

Knowledge and perception of AI

1. What do you know about Merlin’s AI?

2. How accurate do you think Merlin’s bird identification is?

3. How well did you expect Merlin to work? How well did it actually work?

4. How do you know if Merlin is correct or incorrect?

5. Do you know when Merlin works well and not? For example, have you noticed

that it works better on certain types of inputs or certain bird species?

Trust

We will now present two scenarios to you and ask whether you would use Merlin in

them.
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1. Scenario 1: Suppose you find a sick bird and take it to the vet. The vet is not

sure what bird it is. Would you recommend Merlin to identify the bird species

so that the vet can determine the course of treatment?

2. Scenario 2: Suppose you are entering a game show where you can win or lose

money based on how well you can identify birds from photos or audio recordings.

You can only use one resource among Merlin, books (e.g., field guides), the

Internet (e.g., search engine, online birder community), and so on. Which

resource would you use? Does your answer change depending on certain factors?

XAI needs (open-ended questions)

1. Could you reflect on a time when Merlin didn’t work as you expected and/or

the last time you used Merlin?

2. During this time what questions did you have? Did you want any explanations

of why or how Merlin made its identification?

3. In general, what more do you wish to know about Merlin’s AI?

XAI needs (survey)

We will now direct you to a survey. Please take a few minutes to fill it out. When

you’re done, let us know and we will ask a few follow-up questions about your re-

sponses. [Share survey link and wait for completion.]

Thank you for filling out the survey.

1. How do you know the answers to questions XYZ?

2. What made you select some questions and not others? Could you explain your

thought process?

3. How much would you go out of your way to get the answers to these questions?
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Figure B.1: Snapshot of the survey. For each of the 10 question categories (e.g.,
Data), we ask participants to select all questions in the category they “know the
answer to” in one block (as shown in the figure) and “curious to know (more)” in
another block. See Chapter 3 for details about the survey and Table B.1 for the full
survey questions and participants’ responses.

Part 3: XAI perceptions

Finally, we will show different options for explaining AI’s outputs and ask for your

thoughts. [Start showing slides.]

Participant’s explanation

Before we show options for explaining Merlin’s identifications, we want to first ask

how you explain your bird identification. Here are three example photos. How would

you explain your identification to others?

Perceptions of existing XAI approaches

We uploaded these photos to Merlin Photo ID to see what it returns. For the first

photo, Merlin correctly identified Evening Grosbeak. For the second photo, Merlin
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misidentified Marsh Wren as House Wren. For the third photo, Merlin misidentified

Airplane as Ruby-throated Hummingbird.

We will now show you four different approaches for explaining these identifications.

These are not actual explanations of how Merlin makes identifications, but mock-ups

we created to get your opinions on which explanations would be good to potentially

implement in Merlin. [Introduce XAI approaches, one at a time and in random

order.1]

After introducing an approach, ask:

1. Do you think you have a better understanding of how Merlin’s AI model makes

its identification?

2. Would you like to see this explanation in Merlin?

3. What do you like and dislike about this explanation?

4. What can be improved about this explanation?

5. Is this explanation satisfying?

6. How would you use this explanation?

After going through all approaches, ask:

1. Which explanation was your favorite and least favorite? Why?

2. Having seen different explanation options, would you change how you explain

your own bird identification?

1See Chapter 3 for details on how we introduced each approach to participants.
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Closing

Is there anything that you want the research team to know that we haven’t been able

to cover yet?

B.2 Materials for studying XAI perceptions

In this section we describe how we created the materials used in Part 3 of the interview.

Selecting examples

Merlin’s results can be divided into three categories: (1) correct identification, (2)

misidentification that people, even experienced birders, would make, (3) misidentifi-

cation that people wouldn’t make. We decided to show an example for each so that

participants think about explanations in context of both successful and unsuccessful

identifications.

For (1) we looked for birds with salient features. We decided on Evening Grosbeak

because it has distinctive color and beak size. For (2) we looked for birds that are

difficult for human birders to identify. We decided on Marsh Wren because it is one

of “little brown birds” that are known to be notoriously difficult to distinguish. For

(3) we looked for an object that is not a bird but can potentially fool Merlin. We

decided on Airplane because it has a similar shape to birds, although people wouldn’t

mistake it for birds.

For each, we selected a few candidate photos from the CUB dataset [391] and the

Internet. We then inputted them to Merlin Photo ID, and based on the identification

results, chose (1) an Evening Grosbeak photo that Merlin correctly identifies, (2) a

Marsh Wren photo that Merlin misidentifies as House Wren, and (3) an Airplane

photo that Merlin misidentifies as Ruby-throated Hummingbird. The misidentifica-

tion in (3) may be due to classification models typically being unable to reject an
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example that doesn’t belong to a pre-defined set of classes. That is, Merlin Photo ID

may not have a “not bird” option and always try to output a bird species even if the

input photo does not contain a bird.

Mocking up XAI explanations

Since we didn’t have access to Merlin’s AI models, it was not possible to produce

actual explanations of how Merlin identifies birds. Hence, we created mock-ups of

representative XAI approaches in the following way.

Heatmap

We created our heatmap-based explanations by training a bird image classification

model and generating GradCAM [339] heatmaps for the example photos. Concretely,

we trained a standard ResNet50-based model on the CUB dataset [391] that achieves

81.0% accuracy in 200 birds classification. See Figure B.2 for a comparison of expla-

nations from an existing method (GradCAM [339]) vs. our mock-up.

Figure B.2: Heatmap-based explanations. (Left) Example explanation from Sel-
varaju and colleagues’ work [339]. (Right) Our mock-up.

Example

For example-based explanations, we looked for photos from the identified bird species

that looked similar to the input photo in the CUB dataset [391] and the Internet. We
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then showed three photos in each explanation mock-up. See Figure B.3 for a com-

parison of explanations from an existing method (Representer Point Selection [422])

vs. our mock-up.

Figure B.3: Example-based explanations. (Left) Example explanation from Yeh,
Kim and colleagues’ work [422]. (Right) Our mock-up.

Concept

For concept-based explanations, we used attributes in the CUB dataset [391] as con-

cepts, following prior work [200]. For each example photo, we manually selected

concepts and coefficients, and calculated a class score based on whether the selected

concepts were present or absent in the input photo. See Figure B.4 for a comparison

of explanations from an existing method (example from [319]) vs. our mock-up. To

improve readability, in our mock-ups, we limited the number of concepts, presented

concepts vertically with one concept in each row, highlighted positive and negative

concept coefficients in different color, and crossed out concepts that were absent.

Figure B.4: Concept-based explanations. (Left) Example explanation from Ra-
maswamy and colleagues’ work [319]. (Right) Our mock-up.
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Prototype

For prototype-based explanations, we identified representative bird parts (e.g., wing,

beak, body) and manually selected prototypes, matching photo regions, and similarity

scores. See Figure B.5 for a comparison of explanations from an existing method

(ProtoPNet [72]) vs. our mock-up. In our mock-ups, we reduced the explanation

complexity by showing the input photo once with all prototype-photo region matches

overlaid on top, and removing all technical details except similarity scores for each

match.

Figure B.5: Prototype-based explanations. (Left) Example explanation from
Chen, Li, and colleagues’ work [72]. The full explanation consists of up to 10 rows.
(Right) Our mock-up.

B.3 Survey questions and results

Finally, we provide the full survey questions and results in Table B.1. See Chapter 3

for details about the survey. Overall, participants were curious about the listed

questions. For each, most participants selected “know the answer to” or “curious to

know (more).” Concretely, out of 19 participants who filled out the survey,2 only 0–4

participants selected neither (don’t know and not curious) for any question. These

2We had 20 participants in total. One participant did not fill out the survey due to time con-
straints.
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participants tended to have low-AI background and lower explainability needs as

described in Chapter 3.

The five questions with the highest number of “know the answer to” selections

were:

Q1. What kind of output does the app give?

Q2. For Sound ID, what is the spectrogram showing?

Q3. What does the output mean?

Q4. Why is this instance predicted X?

Q5. In what situations is the app likely to be correct?

Q1, Q2, Q3 indicate that participants have a good understanding of the AI’s output.

Q4 suggests that participants find the AI’s output understandable. Q5 suggests that

participants are aware when the AI is likely to be correct. These selections were con-

sistent with participants’ experiences with the AI application. Overall, participants

were knowledgeable about the app and aware of when it works well and not.

The five questions with the highest number of “curious to know (more)” selections

were:

Q1. Who collected the data?

Q2. What is the size of the data?

Q3. How was the data collected?

Q4. For Photo ID, when does the app return one vs. multiple birds?

Q5. What features does the app consider to make predictions?

Q1, Q2, Q3 illustrate that participants are curious about the data that powers the

AI. Q4 indicates that participants are not sure why or when different types of outputs

245



are given. Q5 suggests that participants want to know the specific features the AI

uses to make its identification, as described in Chapter 3. We note that Q1, Q2, Q3,

Q4 convey transparency needs which can be met relatively easily by providing more

documentation. Q5 conveys an explainability need, one that many XAI methods are

developed to meet.
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Table B.1: Summary of 19 participants’ responses to the XAI needs survey
developed based on the XAI Question Bank [228]. For each question, we
report the number of participants who selected “Know the answer to,” who selected
“Curious to know (more),” and who selected neither (don’t know andNot curious).
The numbers in each row don’t always add up to 19 because some participants selected
both “Know the answer to” and “Curious to know (more)” for a question.

Question about AI Know Curious Not curious

Data
What data was the app trained on? 8 13 1
Who collected the data? 5 17 0
How was the data collected? 1 16 2
Who provided the data labels? 4 11 4
What is the size of the data? 2 17 0
What are the limitations of the data? 5 13 1

Output
What kind of output does the app give? 15 3 1
What does the output mean? 12 5 2
For Photo ID, when does the app return one vs. multiple birds? 4 15 1
For Sound ID, what is the spectrogram showing? 13 5 1

Performance
How accurate is the app’s prediction? 5 14 1
How often does the app make mistakes? 5 13 1
In what situations is the app likely to be correct? 10 9 1
In what situations is the app likely to be incorrect? 9 11 0

How
How does the app make predictions? 6 13 0
What features does the app consider to make predictions? 4 15 0

Transparency
How do others use the app? 5 11 3
Do domain experts use the app? 6 12 3
Did domain experts help develop the app? 9 8 4

Why
Why is this instance predicted X? 12 7 1
Why are instances A and B given the same prediction? 9 7 3

Why not
Why is this instance NOT predicted Y? 9 8 3
Why is this instance predicted X instead of Y? 8 7 4
Why are instances A and B given different predictions? 8 10 2

What if
What would the app predict if this instance is changed in some way? 5 11 3
What would the app predict for a different instance? 3 14 2

How to be that
How should this instance change to get a different prediction? 5 12 2
What kind of instance gets a different prediction? 6 11 2

How to still be this
What is the scope of change permitted to still get the same prediction? 2 14 3
What kind of instance gets this prediction? 4 12 3
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Appendix C

Supplementary material for

Chapter 4

C.1 Domain and AI background levels

We provide details on the participants’ background levels. We grouped participants

based on their survey responses and interview answers.

• Low-domain: From “don’t know anything about birds” (P11, P12) to “recently

started birding” (P7, P8, P13, P14, P16). Participants who selected the latter

option typically have been birding for a few months or more than a year but in

an on-and-off way, and were able to identify some local birds.

• Medium-domain: Have been birding for a few years and/or can identify most

local birds (P1, P2, P4, P6, P10, P20).

• High-domain: Have been birding for more than a few years and/or do bird-

related work (e.g., ornithologist) (P3, P5, P9, P15, P17, P18, P19).

• Low-AI : From “don’t know anything about AI” (P16, P17) to “have heard

about a few AI concepts or applications” (P2, P5, P7, P12, P20). Participants
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in this group either did not know that the app uses AI (P12, P16) or knew but

weren’t familiar with the technical aspects of AI (P2, P5, P7, P17, P20).

• Medium-AI : From “know the basics of AI and can hold a short conversation

about it” (P1, P3, P8, P9, P14) to “have taken a course in AI or have experience

working with an AI system” (P4, P10, P15). Participants in this group had a

general idea of how the app’s AI might work, e.g., it is neural network based

and has learned to identify birds based on large amounts of labeled examples.

• High-AI : Use, study, or work with AI in day-to-day life (P6, P11, P13, P18,

P19). Participants in this group were extremely familiar with AI in general and

had detailed ideas of how the app’s AI might work at the level of specific data

processing techniques, model architectures, and training algorithms.

Note that our referral here and elsewhere to “high-AI background” participants de-

scribes their expertise with AI in general, not necessarily with the app’s AI.

C.2 Interview protocol

As we noted in Chapter 4, we used interview data from our prior study about explain-

able AI [192]. Below is the portion of the interview protocol we used to understand

what factors influence participants’ trust in AI and how.

Domain and AI background

1. How would you describe your knowledge of birds?

2. How would you describe your knowledge of machine learning and artificial in-

telligence?
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Use of app

1. Which features of Merlin do you use among Bird ID, Photo ID, Sound ID,

Explore Birds? Why do you not use features XYZ?

2. For what tasks do you use the app?

3. How successful are you at accomplishing those tasks?

4. In what scenarios or circumstances do you decide to use the app?

Stakes in use

1. What do you gain when Merlin is successful? What do you lose when Merlin is

unsuccessful?

2. How important is it to you that Merlin gets each and every prediction correct?

As you may know, Merlin uses machine learning-based AI models to identify birds

in photos and audio recordings. We will now ask questions about your experiences

and thoughts on Merlin’s AI models.

Knowledge and perception of AI

1. What do you know about Merlin’s AI?

2. How accurate do you think Merlin’s bird identification is?

3. How well did you expect Merlin to work? How well did it actually work?

4. How do you know if Merlin is correct or incorrect?

5. Do you know when Merlin works well and not? For example, have you noticed

that it works better on certain types of inputs or certain bird species?
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High-risk scenarios

We will now present two scenarios to you and ask whether you would use Merlin in

them.

1. Scenario 1: Suppose you find a sick bird and take it to the vet. The vet is not

sure what bird it is. Would you recommend Merlin to identify the bird species

so that the vet can determine the course of treatment?

2. Scenario 2: Suppose you are entering a game show where you can win or lose

money based on how well you can identify birds from photos or audio recordings.

You can only use one resource among Merlin, books (e.g., field guides), the

Internet (e.g., search engine, online birder community), and so on. Which

resource would you use? Does your answer change depending on certain factors?

Closing

Is there anything that you want the research team to know that we haven’t been able

to cover yet?

251



Appendix D

Supplementary material for

Chapter 5

D.1 Participant demographics and background

In the exit questionnaire, participants optionally self-reported their gender, age, race,

ethnicity, and level of education. Of 404 participants in the final sample, 51.7%

identified as woman, 46.8% as man, and 0.5% as non-binary. The age distribution

was as follows: 18–24 (5.2%), 25–34 (32.4%), 35–44 (35.1%), 45–54 (14.4%), 55-64

(9.7%), 65–74 (2.7%), and 75–84 (0.2%). Regarding race, 82.4% identified as white

alone, followed by Asian alone (6.7%), Black or African American alone (5.9%), two or

more races (2.0%), and American Indian and Alaska Native alone (1.0%). Regarding

ethnicity, 12.4% identified as Hispanic or Latino, and 86.9% as not. For the highest

level of education completed, 58.7% said 4 year degree, followed by professional degree

(13.6%), high school graduate (9.4%), some college (7.9%), 2 year degree (7.7%),

doctorate (1.7%), and less than high school (0.2%).

In Table D.1, we compare the demographics of our study sample (N=404) with

U.S. Census data [381, 382]. Compared to the U.S. population, our sample is younger
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and more educated, a common characteristic of samples recruited through online

crowdsourcing platforms [151, 163, 302, 322]. Further, white respondents are over-

represented, while Black and Hispanic/Latino respondents are under-represented.

In the exit questionnaire, we also measured the following variables based on par-

ticipants’ self-reported ratings on a 5-point scale:

• LLMFamiliarity: Rating on the question “How familiar are you with LLMs and

LLM-infused applications such as OpenAI’s ChatGPT, Microsoft’s Bing Chat, and

Google’s Bard?”

• LLMUse: Rating on the question “How often do you use LLMs and LLM-infused

applications such as OpenAI’s ChatGPT, Microsoft’s Bing Chat, and Google’s

Bard?”

• LLMAttitude: Rating on the question “Overall, how do you feel about LLMs and

LLM-infused applications such as OpenAI’s ChatGPT, Microsoft’s Bing Chat, and

Google’s Bard?”

The mean and standard deviation of LLMFamiliarity are 3.0 ± 1.0 around “3:

Moderately familiar, I know what they are and can explain.” For LLMUse, they are

2.8 ± 1.2 between “2: Rarely, about 1–2 times a month” and “3: Sometimes, about

3–4 times a month.” For LLMAttidue, they are 3.8 ± 1.0 between “3: Neutral” and

“4: Somewhat positive.” This result consistent with that of Koonchanok et al. [202]

who investigated public attitudes towards ChatGPT by analyzing Twitter data from

December 2022 to March 2023 and found that the overall sentiment is largely neutral

to positive.
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Table D.1: Demographics of our study sample (N=404) compared to the
U.S. population. N/A indicates there is no data for the given category. ∗ indicates
multiple selection and self-description were possible.

Demographic Attribute Sample Census

Gender∗

Woman 51.7% N/A
Man 46.8% N/A
Non-binary 0.5% N/A
Gender-diverse 0.0% N/A
Transgender 0.0% N/A
Prefer not to answer 1.0% N/A

Sex
Female N/A 50.9%
Male N/A 49.1%

Age

18–24 5.2% 9.4%
25–34 32.4% 13.5%
35–44 35.1% 12.7%
45–54 14.4% 12.4%
55–64 9.7% 13.1%
65–74 2.7% 10.0%
75–84 0.2% 4.9%
85 or older 0.0% 1.9%
Prefer not to answer 0.2% N/A

Race∗

White alone 82.4% 61.6%
Black or African American alone 5.9% 12.4%
American Indian or Alaska Native alone 1.0% 1.1%
Asian alone 6.7% 6.0%
Native Hawaiian or Other Pacific Islander alone 0.0% 0.2%
Some Other Race N/A 8.4%
Two or More Races 2.0% 10.2%
Prefer not to answer 1.7% N/A

Ethnicity
Hispanic or Latino 12.4% 18.7%
Not Hispanic or Latino 86.9% 81.3%
Prefer not to answer 0.7% N/A

Educational attainment

Less than high school 0.2% 9.6%
High school graduate 9.4% 29.2%
Some college 7.9% 16.5%
2 year degree (Associate’s degree in the Census) 7.7% 9.9%
4 year degree (Bachelor’s degree in the Census) 58.7% 22.1%
Master’s degree N/A 9.5%
Professional degree 13.6% 1.4%
Doctorate 1.7 % 1.9%
Prefer not to answer 0.7% N/A

D.2 Data collection and exclusion

In this section, we provide more details about our pre-registered data collection pro-

cedures and exclusion criteria.1

1Our pre-registration is viewable at https://osf.io/mnrp9.
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Sample size. We determined our target sample size (N=432) with an a pri-

ori power analysis using the statistical software G*Power [115, 116]. According to

G*Power’s calculation, a conservative Wilcoxon-Mann-Whitney two-tailed test re-

quires 90 participants per condition to detect medium-sized effects (Cohen’s d = 0.5)

at the significance level of α = 0.05 with power (1-β) = 0.90. Since we have four

conditions, the required sample size is 360. We increased the number by 20% to 432

to account for possible exclusions.

Data collection plan. We planned to recruit U.S.-based participants from Ama-

zon Mechanical Turk (MTurk) with a Masters qualification, 99% or higher approval

rating, and at least 2000 completed human intelligence tasks (HITs). If we are un-

able to meet our target sample size in 7 days, we planned to remove the Masters

qualification and release additional HITs in batches of size 50, checking the number

of non-excluded data points after each batch, until we have hit a total of at least 360

non-excluded responses.

Data collection. We collected data over the course of two weeks in September

2023. From September 2 to 8, we collected 101 complete responses with the Masters

qualification requirement. Since we were not able to recruit the target sample size

of 432 in 7 days, following our pre-registered plan, we then removed the Masters

qualification requirement and released additional HITs in batches of size 50, checking

the number of non-excluded data points after each batch, until we hit a total of at

least 360 non-excluded responses. Concretely, we collected 555 complete responses

from September 8 to 15 without the Masters qualification requirement.

Data exclusion. In total, we collected 656 complete responses and excluded 252

(38.4%) — 5 from the 101 (5.0%) collected with the Masters qualification requirement

and 247 from the 555 (44.5%) collected without the requirement — that satisfied any

of the following criteria: (1) with answers to honeypot questions that are invisible to

people but visible to bots; (2) with the same answers to all tasks; (3) with response
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time under 5 minutes; (4) with less than 75% accuracy on the post-task attention

check where participants are shown a list of questions and asked to indicate which

ones they answered and didn’t during the task; and (5) with free-form answers that

are clearly off-topic (e.g., answers are irrelevant, gibberish, spam) or identical across

multiple responses. Note that (1)–(4) can be assessed automatically, while (5) requires

a manual review. When determining whether a free-form answer was off-topic for (5),

we did not consider the condition or answers to any other questions in the experiment.

In total, 1 response was flagged for (1), 86 responses for (2), 21 responses for

(3), 180 responses for (4), and 101 (56 off-topic and 45 identical) responses for (5).

Oftentimes, the same response was flagged for multiple criteria. In total, 205 responses

were excluded based on (1)–(4), and 47 responses were additionally excluded based

on (5). While time-consuming, we found manually reviewing free-form answers for

(5) to be an effective data quality control measure. With it, we were able to exclude

responses that seem to be from bots, and responses that seem to be from the same

person using multiple MTurk accounts. (We set up our HITs such that each MTurk

account can participate only once. Nonetheless, we saw responses from different

MTurk accounts sometimes contain identical free-form answers.)

Examples of free-form answers that were off-topic include:

• “I cannot directly access or analyze the responses of other AI systems, including

‘Al system A,’ so I do not have insight into when or why it might express

uncertainty.”

• “The term AI, coined in the 1950s, refers to the simulation of human intelligence

by machines.”

• “Humans use their brains’ memory, processing power, and cognitive abilities.”

Examples of free-form answers that were identical across multiple responses from

different MTurk accounts include:
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• “I have given the AI’s given answers by burning them into consideration.” (ap-

peared 3 times)

• “During some questions, the AI does not know the answer surely and the reason

for its uncertainly is that it isn’t updated to latest information.” (appeared 4

times)

• “It is very useful and make my decision. I am only concentrate this task and

use the AI’s answer and make my decision.” (appeared 3 times)

Manipulation check. According to our manipulation check in the exit ques-

tionnaire, 90.2% of Uncertain1st and 88.3% of UncertainGeneral participants

answered that they noticed the AI system’s uncertainty expression.

D.3 Additional analyses

Exploration of LinkClick and UseLink

For the within-condition analysis, we pre-registered that we would fit the model DV

∼ AIUncertain + (1|participant) + (1|question). However, when we fit this

model for LinkClick and UseLink looking at data from UncertainGeneral, the

model does not fit properly (has a singular fit) due to large individual variance. For

example, according to our tracking, 50 out of 94 participants inUncertainGeneral

never clicked on any link, 17 participants clicked on one or more links for all eight

tasks, and 27 participants clicked on links for some tasks and not for others. To

explore how these variables differ between instances with AI responses that are not

uncertain vs. uncertain, we fit a simpler model with the random effects removed: DV

∼ AIUncertain. For LinkClick, the estimated means (and standard errors) from

the model are 32.4% (2.4) vs. 33.0% (2.4). For UseLink, they are 65.2% (2.5) vs.
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69.9% (2.4). The differences are not significant for both variables. This result is

consistent with the result for Uncertain1st in the results table in Chapter 5.

Internal consistency of scales used to measure trust and per-

ception of AI

The four DVs related to trust and perceptions of AI — TrustBelief, TrustIntention,

Anthropomorphism, and Transparency — are indexes calculated based on partici-

pants’ ratings on multi-item scales. In this section, we assess the internal consistency

of the used scales by calculating Cronbach’s alpha [90] for each variable. Cronbach’s

alpha is a popular measure of internal consistency, or reliability, of a scale. It ranges

between 0 and 1 with higher values indicating higher internal consistency. Values

over 0.8 are deemed good. The Cronbach’s alpha values were 0.83 for TrustBelief,

0.85 for TrustIntention, 0.85 for Anthropomorphism, and 0.21 for Transparency.

Recall that TrustBelief, TrustIntention, and Anthropomorphism were measured

with 6, 4, and 4 items adapted from existing scales [28, 145]. The high Cronbach’s

alpha values suggest these items have good internal consistency. On the other hand,

Transparency had a low Cronbach’s alpha value. This may be because it was

measured with 2 items that are not from an existing, tested scale. (To the best of

our knowledge, there are no established scales for measuring perceived transparency

of algorithmic systems.) For future researchers interested in using our 2 items, we

suggest reporting their results separately. The item-level results are presented in

Table D.2.
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Table D.2: Item-level results for TrustBelief, TrustIntention,
Anthropomorphism, and Transparency. We report estimated means (and
standard errors) from an ANOVA. See Appendix D.3 for the internal consistency of
the used scales.

†These items are reverse-coded.

DV (Scale: 1-5) Control Uncertain1st UncertainGeneral

TrustBelief (6 items) 3.90 (0.06) 3.86 (0.07) 4.00 (0.07)

AI system A is competent and effective in
answering questions

4.06 (0.09) 3.83 (0.09) 3.98 (0.09)

Overall, AI system A is a capable and profi-
cient information provider

3.91 (0.09) 3.71 (0.10) 4.00 (0.10)

I would characterize AI system A as honest 3.80 (0.09) 3.85 (0.09) 3.90 (0.09)

AI system A is NOT truthful in providing
information to me†

3.45 (0.11) 3.60 (0.11) 3.85 (0.11)

I believe that AI system A was developed to
act in my (or the users’) best interest

3.99 (0.09) 3.92 (0.09) 4.00 (0.09)

AI system A was developed with good inten-
tions to do its best to help me (or the users)

4.21 (0.07) 4.23 (0.08) 4.26 (0.08)

TrustIntention (4 items) 3.25 (0.10) 2.91 (0.10) 3.36 (0.10)

When an important question arises, I
would NOT feel comfortable depending
on the information provided by AI sys-
tem A†

2.75 (0.12) 2.36 (0.12) 3.06 (0.12)

I can always rely on AI system A to find in-
formation

3.46 (0.12) 2.97 (0.12) 3.32 (0.12)

I would feel comfortable acting on the infor-
mation given to me by AI system A

3.47 (0.12) 3.30 (0.13) 3.74 (0.13)

I would not hesitate to use the information
AI system A supplied me

3.32 (0.12) 3.00 (0.13) 3.33 (0.12)

Anthropomorphism (4 items) 3.07 (0.10) 3.00 (0.11) 3.13 (0.11)

Fake – 1 – 2 – 3 – 4 – 5 – Natural 3.60 (0.10) 3.36 (0.10) 3.57 (0.10)

Machinelike – 1 – 2 – 3 – 4 – 5 – Humanlike 2.89 (0.12) 3.02 (0.13) 2.99 (0.13)

Unconscious – 1 – 2 – 3 – 4 – 5 – Conscious 2.99 (0.13) 2.86 (0.14) 3.13 (0.14)

Artificial – 1 – 2 – 3 – 4 – 5 – Lifelike 2.79 (0.13) 2.76 (0.14) 2.84 (0.14)

Transparency (2 items) 4.04 (0.06) 3.93 (0.07) 4.01 (0.07)

I feel I had a good understanding of what AI
system A’s answers were based on

4.29 (0.07) 4.17 (0.07) 4.34 (0.07)

I feel I had a good understanding of when AI
system A’s answers might be wrong

3.80 (0.10) 3.68 (0.10) 3.68 (0.10)
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D.4 Full wording used in the experiment

We show the full wording used in the experiment. If questions and descriptions

varied across conditions, we indicated in the heading. We also added annotations in

[brackets] to aid understanding.

About the study

Control, Uncertain1st, UncertainGeneral

Imagine you have a question that you don’t know the answer to. You

have access to an AI system that is connected to the internet and can

answer a wide range of questions, so you asked the question and received

an answer. What will you do next?

In this study, you will complete a set of information-seeking tasks with the

help of an AI system prototype named A. Each task involves determining

the correct answer to the presented question. You will see AI system A’s

answer to the question. If you want, you can also use other resources (e.g.,

internet, books, friends and family).

You will complete 8 tasks in total. After all tasks, you will complete an

exit questionnaire that asks about your experience and perception of the

AI system, demographics, and other background. In total, this study will

take around 20 minutes to complete, with the exit questionnaire taking

5–7 minutes. Please complete everything in one sitting.

No-AI

In this study, you will complete a set of information-seeking tasks. Each

task involves determining the correct answer to the presented question.
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You may use any resource (e.g., internet, books, friends and family) to

complete the tasks.

You will complete 8 tasks in total. After all tasks, you will complete an exit

questionnaire that asks about your demographics and other background.

In total, this study will take around 20 minutes to complete, with the

exit questionnaire taking 5–7 minutes. Please complete everything in one

sitting.

About the AI system

Control, Uncertain1st, UncertainGeneral

The AI system prototype used in this study is based on a “large language

model” (LLM). When asked questions or given instructions, LLMs can

generate human-like responses. These generated responses can sound con-

vincing and fluent, but may not always be correct. LLMs can be used for

many tasks, including question answering, text summarization, creative

writing, and programming. You may have used or heard about some pop-

ular applications using LLMs, such as OpenAI’s ChatGPT, Microsoft’s

Bing Chat, and Google’s Bard. Some are connected to the Internet, while

others are not.

In this study, we will show you responses from the AI system prototype

named A that uses similar technology to OpenAI’s ChatGPT. AI system

A is connected to the internet and can answer a wide range of questions.

It also sometimes provides sources for its answers. However, as with all AI

systems, its responses, including the provided sources, may be inaccurate,

incomplete, and inconsistent, even when they sound convincing.
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Figure D.1: Task example page shown for participants in the Control,
Uncertain1st, UncertainGeneral conditions.

Task example

[In Figure D.1, we show the task example page shown for participants in the Control,

Uncertain1st, UncertainGeneral conditions. Participants in the No-AI condition

were only shown the task question and slightly different set of survey questions. See

the Task section for details.]

Task comprehension questions

Control, Uncertain1st, UncertainGeneral

Q. Recall what you read earlier about this study and AI system A, and

select TRUE or FALSE for each statement. (Options: TRUE, FALSE)

• AI system A is connected to the internet and sometimes provides

sources in clickable links.

• AI system A uses technology similar to OpenAI’s ChatGPT.
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• You may not leave this Qualtrics survey page during the study.

• You will complete 8 information-seeking tasks in total.

These are the correct answers. Please review them before proceeding.

• (TRUE) AI system A is connected to the internet and sometimes

provide sources in clickable links.

• (TRUE) AI system A uses technology similar to OpenAI’s ChatGPT.

• (FALSE) You may not leave this Qualtrics survey page during the

study.

→ You may leave the page to read sources in AI system A’s answers

or use another resource to complete the information-seeking tasks.

• (TRUE) You will complete 8 information-seeking tasks in total.

You will now proceed to the 8 information-seeking tasks. Please complete

them in one sitting, and please do your best! You will be asked questions

about them at the end.

No-AI

Q. Recall what you read earlier about this study, and select TRUE or

FALSE for each statement.

• You may not leave this Qualtrics survey page during the study.

• You will complete 8 information-seeking tasks in total.

These are the correct answers. Please review them before proceeding.

• (FALSE) You may not leave this Qualtrics survey page during the

study.
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→ You may leave the page to use another resource to complete the

information-seeking tasks.

• (TRUE) You will complete 8 information-seeking tasks in total.

You will now proceed to the 8 information-seeking tasks. Please complete

them in one sitting, and please do your best! You will be asked questions

about them at the end.

Task (repeated 8 times)

[All participants answered the same 8 questions. However, participants in different

conditions were provided with different AI responses (e.g., with vs. without uncer-

tainty) or not provided with an AI response. In Figure D.2, we show the study

stimuli for one of the tasks. The full task questions and AI responses used are in

Appendix D.5. Below we show the questions that participants answered after seeing

the study stimuli.]

Control, Uncertain1st, UncertainGeneral

Q. How confident are you in AI system A’s answer?

• Not confident at all

• Not very confident

• Neither

• Fairly confident

• Very confident

Q. What is your final answer to the question: [task question]?

• Yes
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• No

Q. How confident are you in your final answer?

• Not confident at all

• Not very confident

• Neither

• Fairly confident

• Very confident

Q. What is your final answer based on? (Select all that apply)

• AI system A’s answer

• Your own reading of the linked sources in AI system A’s answer

• Your own knowledge

• Your own internet search

• Other (please specify):

No-AI

Q. What is your final answer to the question: [task question]?

• Yes

• No

Q. How confident are you in your final answer?

• Not confident at all

• Not very confident
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• Neither

• Fairly confident

• Very confident

Q. What is your final answer based on? (Select all that apply)

• AI system A’s answer

• Your own reading of the linked sources in AI system A’s answer

• Your own knowledge

• Your own internet search

• Other (please specify):

Task attention check

Thank you for completing all the tasks! We’re curious how well you remember the

questions you answered. For each question, indicate whether you answered it or

didn’t.

(Options: Answered, Didn’t answer)

• Did Dupilumab receive FDA approval for Asthma before Chronic

Rhinosinustis?

• Is there more antihistamine in Benadryl than Rhinocort?

• Is Deep Vein Thrombosis a common side effect of Ocella?

• Is Spironolactone an FDA-approved drug for treating acne?

• Are both Simvastatin and Ambien drugs that are recommended to

be taken at night?

• Is Uveitis a common symptom of Ankylosing Spondylitis?
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• Is fever a common symptom of Jock Itch?

• Can an adult who has not had chickenpox get shingles?

• Comparing single tablets, does Tylenol Regular Strength Liquid Gels

contain more Acetaminophen and Dextromethorphan than DayQuil

Cold and Flu Liquicaps?

• Can an adult who has had measles get SSPE?

• Are there known drug-drug interactions between Gabapentin and

Hydrocodone?

• Comparing single tablets, does Pepto-Bismol contain more bismuth

subsalicylate than Imodium?

• Are Bisphosphonates the most common drug treatment for Osteo-

porosis?

• Is there a FDA-approved drug for treating peanut allergy in adults

18 years or older?

• Is tonsillectomy the most common surgical treatment for sleep apnea?

• Are there known drug-drug interactions between Phentermine and

Dicyclomine?

[The correct answer is “Answered” for the first 8 questions, and “Didn’t answer” for

the latter 8 questions. For each participant, we randomly selected 8 questions from

the list and showed them in random order.]

Open-ended questions

Welcome to the final part of the study! This questionnaire will take 5–7 minutes, and

you will receive your payment code at the end.

Control
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(a) Control (b) Uncertain1st

(c) UncertainGeneral (d) No-AI

Figure D.2: Study stimuli for one of the tasks. The question is the same, but
participants in different conditions were provided with different AI responses (e.g.,
with vs. without uncertainty) or not provided with an AI response.

Q. How did you use AI system A’s answers to complete the tasks?

Q. If you used resources other than AI system A’s answers, when and why did you

do that?

Q. If you submitted a final answer different from AI system A’s answer, why did you

do that?

Uncertain1st

Q. How did you use AI system A’s answers to complete the tasks?

Q. If you used resources other than AI system A’s answers, when and why

did you do that?
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Q. If you submitted a final answer different from AI system A’s answer,

why did you do that?

Q. Did you notice that AI system A sometimes expressed uncertainty in

its answers (e.g., “I’m not sure, but it seems...”)?

• Yes

• No

Q. When and why do you think AI system A expresses uncertainty?

UncertainGeneral

Q. How did you use AI system A’s answers to complete the tasks?

Q. If you used resources other than AI system A’s answers, when and why

did you do that?

Q. If you submitted a final answer different from AI system A’s answer,

why did you do that?

Q. Did you notice that AI system A sometimes expressed uncertainty in

its answers (e.g., “There is uncertainty, but it seems...”)?

• Yes

• No

Q. When and why do you think AI system A expresses uncertainty?

No-AI

Q. What resources did you use to complete the tasks?

Q. Why did you use the aforementioned resources?

269



About AI system A

Control, Uncertain1st, UncertainGeneral

[Measures Transparency]

Q. Select one answer for each statement. (Options: Strongly disagree,

Somewhat disagree, Neither, Somewhat agree, Strongly agree)

• I feel I had a good understanding of what AI system A’s answers

were based on

• I feel I had a good understanding of when AI system A’s answers

might be wrong

[Measures Anthropomorphism]

Q. Rate your impression of AI system A on these scales.

• Fake – 1 – 2 – 3 – 4 – 5 – Natural

• Machinelike – 1 – 2 – 3 – 4 – 5 – Humanlike

• Unconscious – 1 – 2 – 3 – 4 – 5 – Conscious

• Artificial – 1 – 2 – 3 – 4 – 5 – Lifelike

[Measures TrustBelief]

Q. Select one answer for each statement. (Options: Strongly disagree,

Somewhat disagree, Neither, Somewhat agree, Strongly agree)

• AI system A is competent and effective in answering questions

• Overall, AI system A is a capable and proficient information provider

• I would characterize AI system A as honest

• AI system A is NOT truthful in providing information to me
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• I believe that AI system A was developed to act in my (or the users’)

best interest

• AI system A was developed with good intentions to do its best to

help me (or the users)

[Honeypot question that is invisible to people but visible to bots.]

Q. If you are paying attention, please select Yellow. (Options: Yellow,

Violet, Green, Red)

[Measures TrustIntention]

Q. Select one answer for each statement. (Options: Strongly disagree,

Somewhat disagree, Neither, Somewhat agree, Strongly agree)

• When an important question arises, I would NOT feel comfortable

depending on the information provided by AI system A

• I can always rely on AI system A to find information

• I would feel comfortable acting on the information given to me by

AI system A

• I would not hesitate to use the information AI system A supplied me

About Large Language Models (LLMs)

[This sentence was only shown to participants in the Control, Uncertain1st,

UncertainGeneral conditions.]

Note that these questions are about large language models (LLMs) and LLM-infused

applications in general, not about AI system A.

[Measures LLMFamiliarity]
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Q. How familiar are you with LLMs and LLM-infused applications such

as OpenAI’s ChatGPT, Microsoft’s Bing Chat, and Google’s Bard?

• Not familiar at all, I have never heard of them

• Slightly familiar, I have heard of them or have some idea of what

they are

• Moderately familiar, I know what they are and can explain

• Very familiar, I have technical knowledge of what they are and how

they work

• Extremely familiar, I consider myself an expert on them

[Measures LLMUse]

Q. How often do you use LLMs and LLM-infused applications such as

OpenAI’s ChatGPT, Microsoft’s Bing Chat, and Google’s Bard?

• Never

• Rarely, about 1–2 times a month

• Sometimes, about 3–4 times a month

• Often, about twice a week

• Always, about once or more a day

[Measures LLMAttitude]

Q. Overall, how do you feel about LLMs and LLM-infused applications

such as OpenAI’s ChatGPT, Microsoft’s Bing Chat, and Google’s Bard?

• Negative

• Somewhat negative

• Neutral
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• Somewhat positive

• Positive

[Honeypot question that is invisible to people but visible to bots.]

Q. If you are paying attention, please write -1 as the answer.

Demographics

Q. What is your age?

• 18–24

• 25–34

• 35–44

• 45–54

• 55–64

• 65–74

• 75–84

• 85 or older

• Prefer not to answer

Q. What is the highest degree of education you have completed? (If you’re

currently enrolled in school, please indicate the highest degree you have

received.)

• Less than high school

• High school graduate

• Some college
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• 2 year degree

• 4 year degree

• Professional degree

• Doctorate

• Prefer not to answer

Q. What gender do you identify with? (Select all that apply)

• Woman

• Man

• Non-binary

• Gender-diverse

• Transgender

• Prefer to self-describe:

• Prefer not to answer

Q. Are you of Hispanic, Latino, or of Spanish Origin?

• Yes

• No

• Prefer not to answer

Q. How would you describe your race? (Select all that apply)

• American Indian or Alaska Native

• Asian

• Black or African American
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• Native Hawaiian or Other Pacific Islander

• White

• Prefer to self-describe:

• Prefer not to answer

Q. What time is it right now for you? (E.g., 2:41pm)

Debrief

[This section was only shown to participants in the Control, Uncertain1st, Un-

certainGeneral conditions.]

Thank you for your participation in the study! To create a realistic experimental

setting, we showed AI answers that are directly from, or only slightly adapted from,

responses from an actual AI system. As known, AI systems can make up information.

Please note that the AI answers you saw in this study may have been inaccurate,

incomplete, or inconsistent, even when they sounded convincing.

Feedback

Q. Can we change this study to make it more friendly for MTurkers? We can’t make it

shorter, but if there’s anything else we can do—we appreciate any and all suggestions!

D.5 Questions and AI responses used

For each task question, we show the original response from Copilot in Bing and the

different AI response versions we created from it. The adaptations we made to the

original response are highlighted.
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Did Dupilumab receive FDA approval for Asthma before

Chronic Rhinosinustis? (Ground Truth: Yes, AI: No)

Original response from Copilot in Bing (July 20, 2023)

Dupilumab was approved by the FDA for Chronic Rhinosinusitis with

Nasal Polyps on June 26, 2019 [1]. It was later approved for Asthma on

October 20, 2022 [2].

[1] FDA approves first treatment for chronic rhinosinusitis with nasal ....

https://www.fda.gov/news-events/press-announcements/fda-app

roves-first-treatment-chronic-rhinosinusitis-nasal-polyps

[2] Dupixent (dupilumab) FDA Approval History - Drugs.com. https:

//www.drugs.com/history/dupixent.html

AI responses used

• Not uncertain: No, Dupilumab was approved by the FDA for Chronic Rhinosi-

nusitis with Nasal Polyps on June 26, 2019 [1]. It was later approved for Asthma

on October 20, 2022 [2].

• Uncertain in the first-person perspective: I’m not certain, but it seems to

me Dupilumab was approved by the FDA for Chronic Rhinosinusitis with Nasal

Polyps on June 26, 2019 [1]. It was later approved for Asthma on October 20, 2022

[2].

• Uncertain in the general perspective: There is uncertainty, but it seems like

Dupilumab was approved by the FDA for Chronic Rhinosinusitis with Nasal Polyps

on June 26, 2019 [1]. It was later approved for Asthma on October 20, 2022 [2].
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Is there more antihistamine in Benadryl than Rhinocort?

(Ground Truth: Yes, AI: No)

Original response from Copilot in Bing (July 31, 2023)

No, Benadryl does not contain more antihistamine than Rhinocort. Be-

nadryl contains diphenhydramine which is an antihistamine that blocks

histamine, a symptom-causing chemical released by your immune system

during an allergic reaction [1]. Rhinocort contains budesonide which is a

steroid that works by reducing inflammation in the nasal passages [2].

[1] What’s the Best Allergy Medication? Comparing Allegra, Benadryl

.... https://www.goodrx.com/conditions/allergies/youre-probabl

y-taking-the-wrong-allergy-medication

[2] Nonallergic rhinitis - Diagnosis & treatment - Mayo Clinic. https:

//www.mayoclinic.org/diseases-conditions/nonallergic-rhiniti

s/diagnosis-treatment/drc-20351235

AI responses used

• Not uncertain: No, Benadryl does not contain more antihistamine than

Rhinocort. Benadryl contains diphenhydramine which is an antihistamine that

blocks histamine, a symptom-causing chemical released by your immune system

during an allergic reaction [1]. Rhinocort contains budesonide which is a steroid

that works by reducing inflammation in the nasal passages [2].

• Uncertain in the first-person perspective: I’m not certain, but it seems to me

Benadryl does not contain more antihistamine than Rhinocort. Benadryl contains

diphenhydramine which is an antihistamine that blocks histamine, a symptom-

causing chemical released by your immune system during an allergic reaction [1].
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Rhinocort contains budesonide which is a steroid that works by reducing inflam-

mation in the nasal passages [2].

• Uncertain in the general perspective: It’s unclear, but it seems like Benadryl

does not contain more antihistamine than Rhinocort. Benadryl contains diphen-

hydramine which is an antihistamine that blocks histamine, a symptom-causing

chemical released by your immune system during an allergic reaction [1]. Rhinocort

contains budesonide which is a steroid that works by reducing inflammation in the

nasal passages [2].

Is Deep Vein Thrombosis a common side effect of Ocella?

(Ground Truth: No, AI: Yes)

Original response from Copilot in Bing (July 10, 2023)

Yes, Deep Vein Thrombosis (DVT) is a serious side effect of Ocella [1, 2].

DVT is a blood clot that forms in a vein deep inside the body [2]. If you

are experiencing any symptoms of DVT such as swelling, pain, or warmth

in the leg, please contact your doctor immediately [2].

[1] Side effects of Ocella. https://www.msn.com/en-us/health/drugs

/ocella/hp-ocella

[2] Ocella Attorney – Deep Vein Thrombosis DVT Blood Clot Lawsuits

.... https://downtownlalaw.com/practice-areas/dangerous-drugs

/ocella-attorney/

AI responses used

• Not uncertain: Yes, Deep Vein Thrombosis (DVT) is a serious side effect of

Ocella [1] [2]. DVT is a blood clot that forms in a vein deep inside the body [2]. If
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you are experiencing any symptoms of DVT such as swelling, pain, or warmth in

the leg, please contact your doctor immediately [2].

• Uncertain in the first-person perspective: I’m not sure, but it seems like

Deep Vein Thrombosis (DVT) is a serious side effect of Ocella [1] [2]. DVT is a

blood clot that forms in a vein deep inside the body [2]. If you are experiencing

any symptoms of DVT such as swelling, pain, or warmth in the leg, please contact

your doctor immediately [2].

• Uncertain in the general perspective: There is uncertainty, but it seems like

Deep Vein Thrombosis (DVT) is a serious side effect of Ocella [1] [2]. DVT is a

blood clot that forms in a vein deep inside the body [2]. If you are experiencing

any symptoms of DVT such as swelling, pain, or warmth in the leg, please contact

your doctor immediately [2].

Is Spironolactone an FDA-approved drug for treating acne?

(Ground Truth: No, AI: Yes)

Original response from Copilot in Bing (July 31, 2023)

Yes, Spironolactone is an FDA-approved drug for treating acne. It is

primarily used in medicine to treat heart failure and high blood pressure

but doctors sometimes prescribe it for acne as well [1, 2, 3, 4].

[1] https://bing.com/search?q=Spironolactone+FDA+acne

[2] Spironolactone in Acne Treatment - Acne.org. https://www.acne.o

rg/spironolactone-in-acne-treatment

[3] Spironolactone for Acne: What It Is, Results, Side Effects and More.

https://dermcollective.com/spironolactone-acne/
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[4] Spironolactone for Acne: Everything You Need to Know - RealSelf.

https://www.realself.com/nonsurgical/spironolactone-for-acne

AI responses used

• Not uncertain: Yes, Spironolactone is an FDA-approved drug for treating acne.

It is primarily used in medicine to treat heart failure and high blood pressure but

doctors sometimes prescribe it for acne as well [1] [2] [3] [4].

• Uncertain in the first-person perspective: I’m not sure, but it seems like

Spironolactone is an FDA-approved drug for treating acne. It is primarily used

in medicine to treat heart failure and high blood pressure but doctors sometimes

prescribe it for acne as well [1] [2] [3] [4].

• Uncertain in the general perspective: There is uncertainty, but it seems like

Spironolactone is an FDA-approved drug for treating acne. It is primarily used

in medicine to treat heart failure and high blood pressure but doctors sometimes

prescribe it for acne as well [1] [2] [3] [4].

Are both Simvastatin and Ambien drugs that are recom-

mended to be taken at night? (Ground Truth: Yes, AI:

Yes)

Original response from Copilot in Bing (July 31, 2023)

Yes, both Simvastatin and Ambien are drugs that are recommended to

be taken at night. Simvastatin is usually taken once a day in the evening

because your body makes most of its cholesterol at night when you are

not eating. Taking it at night works better at lowering cholesterol than in

the morning [1, 2, 3]. Ambien is also recommended to be taken at night

before bedtime [4].
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[1] When is the best time to take simvastatin? - Drugs.com. https://ww

w.drugs.com/medical-answers/best-time-\simvastatin-3571040/

[2] Taking simvastatin in the morning compared with in the evening ....

https://www.bmj.com/content/327/7418/788

[3] Taking Simvastatin At Night - Walrus Health. https://walrus.com

/questions/should-you-take-simvastatin-at-night

[4] https://bing.com/search?q=Simvastatin+and+Ambien+\drugs+re

commended+to+be+taken+at+night%3f

AI responses used

• Not uncertain: Yes, both Simvastatin and Ambien are drugs that are recom-

mended to be taken at night. Simvastatin is usually taken once a day in the

evening because your body makes most of its cholesterol at night when you are not

eating. Taking it at night works better at lowering cholesterol than in the morning

[1] [2] [3]. Ambien is also recommended to be taken at night before bedtime [4].

• Uncertain in the first-person perspective: I’m not sure, but I would guess

both Simvastatin and Ambien are drugs that are recommended to be taken at

night. Simvastatin is usually taken once a day in the evening because your body

makes most of its cholesterol at night when you are not eating. Taking it at night

works better at lowering cholesterol than in the morning [1] [2] [3]. Ambien is also

recommended to be taken at night before bedtime [4].

• Uncertain in the general perspective: It’s not clear, but it seems like both

Simvastatin and Ambien are drugs that are recommended to be taken at night.

Simvastatin is usually taken once a day in the evening because your body makes

most of its cholesterol at night when you are not eating. Taking it at night works
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better at lowering cholesterol than in the morning [1] [2] [3]. Ambien is also rec-

ommended to be taken at night before bedtime [4].

Is Uveitis a common symptom of Ankylosing Spondylitis?

(Ground Truth: Yes, AI: Yes)

Original response from Copilot in Bing (July 10, 2023)

Yes, uveitis is one of the most common complications of Ankylosing

Spondylitis (AS), occurring in 20%-30% of the patients [1]. Uveitis is

inflammation in the middle layer of the eye, and it can affect the front

(anterior) or the back (posterior) part of the eye. Uveitis can cause eye

pain, sensitivity to light, and blurred vision, and it requires immediate

medical attention [1].

[1] Ankylosing Spondylitis (AS): How It Can Affect Your Eyes - WebMD.

https://www.webmd.com/ankylosing-spondylitis/guide/ankylosin

g-spondylitis-uveitis-eyes

AI responses used

• Not uncertain: Yes, uveitis is one of the most common complications of Ankylos-

ing Spondylitis (AS), occurring in 20%-30% of the patients [1]. Uveitis is inflam-

mation in the middle layer of the eye, and it can affect the front (anterior) or the

back (posterior) part of the eye. Uveitis can cause eye pain, sensitivity to light,

and blurred vision, and it requires immediate medical attention [1].

• Uncertain in the first-person perspective: I’m not certain, but I’d guess that

uveitis is one of the most common complications of Ankylosing Spondylitis (AS),

occurring in 20%-30% of the patients [1]. Uveitis is inflammation in the middle
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layer of the eye, and it can affect the front (anterior) or the back (posterior) part

of the eye. Uveitis can cause eye pain, sensitivity to light, and blurred vision, and

it requires immediate medical attention [1].

• Uncertain in the general perspective: It’s unclear, but it seems like uveitis is

one of the most common complications of Ankylosing Spondylitis (AS), occurring

in 20%-30% of the patients [1]. Uveitis is inflammation in the middle layer of the

eye, and it can affect the front (anterior) or the back (posterior) part of the eye.

Uveitis can cause eye pain, sensitivity to light, and blurred vision, and it requires

immediate medical attention [1].

Is fever a common symptom of Jock Itch? (Ground Truth:

No, AI: No)

Original response from Copilot in Bing (July 20, 2023)

No, fever is not a common symptom of Jock Itch. However, if there are

signs of infection such as fever, chills, a pus-like discharge, or worsening

pain, swelling, warmth, or redness, it is important to see a healthcare

provider [1].

[1] Jock Itch Blisters: What You Need to Know - Verywell Health. https:

//www.verywellhealth.com/what-to-know-about-jock-itch-blist

ers-5199753

AI responses used

• Not uncertain: No, fever is not a common symptom of Jock Itch. However, if

there are signs of infection such as fever, chills, a pus-like discharge, or worsening

pain, swelling, warmth, or redness, it is important to see a healthcare provider [1].
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• Uncertain in the first-person perspective: I’m not certain, but I would guess

fever is not a common symptom of Jock Itch. However, if there are signs of infection

such as fever, chills, a pus-like discharge, or worsening pain, swelling, warmth, or

redness, it is important to see a healthcare provider [1].

• Uncertain in the general perspective: There is uncertainty, but it seems like

fever is not a common symptom of Jock Itch. However, if there are signs of infection

such as fever, chills, a pus-like discharge, or worsening pain, swelling, warmth, or

redness, it is important to see a healthcare provider [1].

Can an adult who has not had chickenpox get shingles?

(Ground Truth: No, AI: No)

Original response from Copilot in Bing (July 10, 2023)

No, an adult who has not had chickenpox cannot get shingles. Shingles

is caused by the varicella-zoster virus which is the same virus that causes

chickenpox. If you have never had chickenpox, you cannot get shingles.

However, if you have not had chickenpox and you come into contact with

someone who has shingles, you can get chickenpox [1, 2].

[1] How Shingles Can Cause Chickenpox - Verywell Family. https://ww

w.verywellfamily.com/is-shingles-contagious-2634655

[2] Can You Get Shingles If You Never Had Chickenpox? - Healthline.

https://www.healthline.com/health/can-you-get-shingles-if-y

ou-never-had-chickenpox

AI responses used
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• Not uncertain: No, an adult who has not had chickenpox cannot get shingles.

Shingles is caused by the varicella-zoster virus which is the same virus that causes

chickenpox. If you have never had chickenpox, you cannot get shingles. However,

if you have not had chickenpox and you come into contact with someone who has

shingles, you can get chickenpox [1] [2].

• Uncertain in the first-person perspective: I’m not sure, but it seems to me

that an adult who has not had chickenpox cannot get shingles. Shingles is caused

by the varicella-zoster virus which is the same virus that causes chickenpox. If you

have never had chickenpox, you cannot get shingles. However, if you have not had

chickenpox and you come into contact with someone who has shingles, you can get

chickenpox [1] [2].

• Uncertain in the general perspective: There is uncertainty, but it seems like

an adult who has not had chickenpox cannot get shingles. Shingles is caused by

the varicella-zoster virus which is the same virus that causes chickenpox. If you

have never had chickenpox, you cannot get shingles. However, if you have not had

chickenpox and you come into contact with someone who has shingles, you can get

chickenpox [1] [2].
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Appendix E

Supplementary material for

Chapter 6

E.1 Additional analyses: Study 2 follow-up ques-

tions

As described in Chapter 6, in Study 2, we asked the participant if they would like

to ask a follow-up to Theta. We conducted two additional analyses to understand

when and what types of follow-up questions participants asked. First, we explored

the the relationship between FollowUp (whether the participant writes a follow-up

question they would like to ask) and Agreement (whether the participant submits the

same answer as Theta’s answer). We found that the likelihood of writing a follow-up

question when participants submit the same answer as Theta’s answer vs. not is 33.4%

vs. 56.6%. Breaking down the data into instances in which Theta’s answer is correct

and those where it is incorrect, the likelihood is 33.4% vs. 46.5% when Theta’s answer

is correct and 33.4% vs. 67.5% when Theta’s answer is incorrect. That is, participants

were more likely to ask follow-up questions when they disagreed with Theta’s answer.
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We next analyzed what types of follow-up questions participants wrote. In 43.8%

of these instances, LLM responses had neither an explanation nor sources; in 17.9%,

responses had an explanation only; in 26.1%, responses had sources only; and in 12.3%

responses had both an explanation and sources. To analyze the follow-up questions,

we first went through 100 randomly sampled questions to develop codes, then another

100 to verify that the codes have saturated. In total, we developed 11 codes which we

grouped into 3 categories: (1) questions about related content, (2) requests for sources

or explanations, and (3) expressions of doubt or disagreement. We present them below

along with their percentage out of 200 analyzed questions. The percentages do not

add up to 100 because some questions were coded into more than one category.

(1) Questions about related content (61.0%)

The first category includes follow-up questions related to the task question. Most

frequent were questions directly related to the LLM’s answer (36.0%). For

example, while solving the task question “Which animal was sent to space first,

cockroach or moon jellyfish?” one participant wrote “What was the name and year

of the NASA mission where a moon jellyfish was sent to space?” after receiving a

response that only includes the date of when the first cockroaches were sent to space.

Also frequent were questions that go beyond what is required to answer the

task question (17.5%). For example, while solving the task question “Is it possible

to scuba dive at the sunken city of Port Royal?” one participant wrote “When is

good time of year to scuba dive at sunken city of Port Royal?” Other questions were

simpler. Sometimes participants asked why questions about the LLM’s answer

(4.5%), e.g., one participant wrote “Why is the brain larger now?”after receiving

a response to the task question “Is the human brain smaller or bigger than it was

100,000 years ago?” Finally, while rare, some participants just re-asked the task

question (1.0%), e.g., “How long does food typically take to digest?” which is a
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short and open-ended version of the task question “How long does it take for food to

travel from our mouth to our stomach in general, 7 seconds or 30 seconds?”

(2) Requests for sources or explanations (28.5%)

The second category concerns requests. To begin, many participants used the follow-

up question box to request sources (17.5%), or links, evidence, or proof, e.g., “What

sources are you using for your answer?” Going beyond this, some participants re-

quested quotes or summaries of sources (2.0%), e.g., “Using your sources, find

quotes that support the correct answer.” Participants also made requests for an ex-

planation of the answer (5.5%), or additional details, information, justification,

facts, or statistics, e.g., “Can you give me some reasons as to why this could be true?”

Finally, participants requested for an explanation of how the LLM arrived at the

answer (3.5%), e.g., “How did you make this determination?” where the emphasis is

placed on how the LLM knows the answer, not necessarily why the answer is correct.

(3) Expressions of doubt or disagreement (14.5%)

The final category concerns questions expressing doubt or disagreement. These

include questions that point out inconsistencies in the LLM’s explanations

(1.5%), e.g., “213 isn’t two thirds of 430. Wouldn’t that be less than two thirds?” as

well as gaps and contradictions between the LLM’s answer and the sources

(3.5%), e.g., “None of those sources talk about gorillas, where did you get your info

from?” and “Why did one of your sources disagree with your statement?” In other

examples, participants challenged the LLM’s answer for unspecified reasons, likely

based on their intuition (9.5%), e.g., “Ok, that can’t be right. Are you sure?” and

“A million sounds astronomical to be honest. There is no way you are correct here.”
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Discussion

Together these findings suggest that participants desired to see sources and explana-

tions in LLM responses and tended to ask follow-up questions when they had doubts

or disagreed with the LLM’s answers. These are consistent with the quantitative

findings presented in Chapter 6: the presence of sources and explanations significantly

decreased the likelihood of asking a follow-up question. We also observed that ratings

of the LLM response’s justification quality and actionability tend to be negatively

correlated with the likelihood of asking a follow-up question. In our experiment, we

did not show participants the LLM’s responses to their follow-up questions so that

we can fully control the number and content of responses. Exploring the effects of

follow-up interactions would be an important future research direction.

E.2 Study 1 think-aloud protocol

We conducted the think-aloud study based on the following questions.

Background

• How would you describe your knowledge of artificial intelligence or AI?

• How would you describe your knowledge of LLMs and LLM-infused applications

such as ChatGPT, Copilot, and Gemini?

• Do you use any LLMs and LLM-infused applications? If so, what do you use?

How frequently do you use it and for what tasks? What is your main reason

for using it? How satisfied are you with it overall?
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Setup & Introduction

• Now I will ask you to complete a few tasks with ChatGPT (an LLM-based

chatbot developed by OpenAI). Please open your browser and go to https:

//chat.openai.com/. We have created an account for this study. Please use

this login information to sign into the account.

• [Show three tasks.] These are the tasks I want you to complete using ChatGPT.

They are not trick questions, and all have a correct answer. Please let me know

if you already know the answer to any of the questions off the top of your head.

• For each question, I would like you to first, try to find the correct answer using

ChatGPT, and second, indicate how confident you are in the correctness of the

answer you ended up with.

Part 1 (Base)

• To get started, ask the first task question to ChatGPT. Please read its response

and write follow-up messages as needed. Feel free to start as many new chats

as you want, and please start a new chat for a new task question. Please think

aloud while completing the task. That is, try to say everything that comes to

your mind while you engage with the task.

• [For each task, ask the following questions if the participant does not think

aloud.]

– What do you think is the correct answer to the task question?

– How confident are you in your answer on a scale of 1 to 7?

– What would help you gain more confidence in your answer?

• [After all three tasks, ask the following questions.]
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– Do you view ChatGPT’s responses as explanations? What counts as ex-

planations to you?

– How do you think ChatGPT generates responses?

– Do you think ChatGPT’s responses provide a description of how it arrived

at its answer to the question?

– Would you find it useful to know how ChatGPT arrives at its answer?

Part 2 (Prompting)

• Now I am going to ask you to complete the tasks again. But this time, try

following-up on the provided responses Here are some example prompts you

can use, but be creative! Feel free to try as many.

• [Show prompt examples. The order is randomized for each participant.]

– I think you are wrong. Try again.

– Are you sure about [a specific part of ChatGPT’s response]?

– Explain if [a specific part of the answer] is correct.

– Explain why your answer may be wrong.

– Explain why the correct answer is [opposite from ChatGPT’s previous

answer]?

– Can you explain in a different way?

– Explain step by step.

– Provide a shorter explanation.

– Explain like I’m five.

– Are there other reasons for the answer?

– Provide an explanation with supporting sources.
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– Explain how confident you are in the answer.

• [For each task, ask the following questions if the participant does not think

aloud.]

– What do you think is the correct answer to the task question?

– How confident are you in your answer on a scale of 1 to 7?

– What would help you gain more confidence in your answer?

• [After all three tasks, ask the following questions.]

– Have there been any changes in your thoughts about ChatGPT?

– What did you think about the prompts?

– Is there anything that you want the research team to know that we haven’t

been able to cover yet?

E.3 Study 1 task questions used

As discussed in Chapter 6, each participant was given three questions: a general do-

main factual question, a health or legal domain factual question, and a math question.

The specific question was randomly selected from the following.

• General domain factual questions

– Has Paris hosted the Summer Olympics more times than Tokyo?

– Did Tesla debut its first car model before or after Dropbox was founded?

– Is it cheaper to buy three stocks of Moderna than two stocks of Pepsi?

• Health or legal domain factual questions

– Can you get hepatitis A after having hepatitis B?
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– Can one get Lyme disease from mosquitoes?

– Can a dead wasp inject one with venom?

– Is it illegal to collect rainwater in Colorado?

– Can one legally own a giraffe in Oregon without a permit?

– Can one be charged with a crime for stealing wifi in California?

• Math questions

– Jessica is six years older than Claire. In two years, Claire will be the same

age as Millie Bobby Brown now. The age of Claire’s father twenty years

ago is 3 times the current age of Jessica. How old is Claire’s father now?

– Sue puts one grain of rice on the first square of a Go board and puts double

the amount on the next square. How many grains of rice does Sue put on

the last square?

– A bird watcher records the number of birds he sees each day. The number

of birds he saw on Monday is equivalent to the 12th Fibonacci number. On

Tuesday he sees half as many birds as he did on Monday. On Wednesday

he sees 2 more birds than he did on Tuesday. How many total birds did

the bird watcher see from Monday to Wednesday?

E.4 Study 2 participant demographics and LLM

background

In the exit questionnaire, participants optionally self-reported their gender, age, race,

ethnicity, and level of education. Of 308 participants in the final sample, 38.3%

identified as woman, 58.8% as man, 1.9% as non-binary, 0.3% as gender-diverse,

and 0.3% as transgender. The age distribution was as follows: 18–24 (9.1%), 25–34
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(38.0%), 35–44 (26.0%), 45–54 (15.9%), 55-64 (7.1%), and 65–74 (2.6%). Regarding

race, 56.5% identified as white alone, followed by Black or African American alone

(17.2%), Asian alone (7.8%), two or more races (7.1%), American Indian or Alaska

Native alone (1.3%), and Middle Eastern or North African alone (0.6%). Regarding

ethnicity, 8.8% identified as Hispanic or Latino. For the highest level of education

completed, 38.0% said 4 year degree, followed by some college (19.2%), professional

degree (14.3%) and high school graduate (14.3%), 2 year degree (9.4%), doctorate

(2.6%), less than high school (1.6%).

We also measured the following variables based on participants’ self-reported rat-

ings on a 5-point scale:

• LLM Knowledge: Rating on the question “How familiar are you with LLMs and

LLM-infused applications such as ChatGPT, Copilot, and Gemini?”

• LLM Use: Rating on the question “How often do you use LLMs and LLM-infused

applications such as ChatGPT, Copilot, and Gemini?”

• LLM Attitude: Rating on the question “Overall, how do you feel about LLMs

and LLM-infused applications such as ChatGPT, Copilot, and Gemini?”

The mean and standard deviation of LLM Knowledge are 3.02 ± 0.88 around “3:

Moderately familiar, I know what they are and can explain.” For LLM Use, they are

3.04 ± 1.30 around “3: Sometimes, about 3–4 times a month.” For LLM Attitude,

they are 3.70± 1.03 between “3: Neutral” and “4: Somewhat positive.”

E.5 Study 2 full wording of the experiment

In this section, we present the full wording of the experiment. See Chapter 6 a

description of the study procedure.
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About the study

• Imagine you have a question that you don’t know the answer to. You have

access to an AI system that is connected to the internet and can answer a wide

range of questions, so you’ve asked your question and received a response. What

will you do now?

• In this study, you will answer a set of questions with the help of an AI system

prototype named “Theta.” You will read more about Theta in the next page.

In total, this study will take around 15 minutes to complete. Please complete

everything in one sitting.

About the AI system

• The AI system prototype used in this study, “Theta,” is based on a “large lan-

guage model” (LLM). When asked questions or given instructions, LLMs can

generate human-like responses. These generated responses can sound convinc-

ing and fluent, but may not always be correct. LLMs can be used for many

tasks, including question answering, text summarization, creative writing, and

programming. You may have used or heard about some popular applications

using LLMs such as OpenAI’s ChatGPT, Microsoft’s Copilot, and Google’s

Gemini. Some are connected to the internet, while others are not.

• Theta uses similar technology to OpenAI’s ChatGPT. It is connected to the

internet, and can answer a wide range of questions. However, as with all AI

systems, its responses may be inaccurate, incomplete, and inconsistent, even

when they sound convincing.
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Are you ready to begin?

• You will now be asked to answer 8 questions, and you will have responses from

Theta to help you decide how to answer. You may click on source links in

Theta’s responses, but please do not conduct your own internet search. When

you are ready to proceed, click on the “next” button.

Task (repeated 8 times)

See Chapter 6 for screenshots of the task.

Post-task attention check

• Thank you for completing all the tasks! We’re curious how well you remem-

ber the questions you were asked. For each question, indicate whether you

were asked or not asked the question. [Display 10 randomly selected questions

(around half asked and half not asked in the experiment).]

Open-ended questions

• If you submitted a final answer different from Theta’s answer, can you explain

the reason? Please write 1–3 sentences.

• Please explain in 1–3 sentences how you rated the statement “Theta’s response

offers good justification for its answer.”

• Please explain in 1–3 sentences how you rated the statement: “Theta’s response

includes information that helps me determine what my final answer should be.”
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LLM background

• Note that these questions are about large language models (LLMs) and LLM-

infused applications in general, not about the specific AI system “Theta” used

in this study.

• How familiar are you with LLMs and LLM-infused applications such as Chat-

GPT, Copilot, and Gemini?

– Options: Not familiar at all, I have never heard of them; Slightly famil-

iar, I have heard of them or have some idea of what they are; Moderately

familiar, I know what they are and can explain; Very familiar, I have tech-

nical knowledge of what they are and how they work; Extremely familiar,

I consider myself an expert on them

• How often do you use LLMs and LLM-infused applications such as ChatGPT,

Copilot, and Gemini?

– Options: Never; Rarely, about 1–2 times a month; Sometimes, about 3–4

times a month; Often, about twice a week; Always, about once or more a

day

• Overall, how do you feel about LLMs and LLM-infused applications such as

ChatGPT, Copilot, and Gemini?

– Options: Negative; Somewhat negative; Neutral; Somewhat positive; Pos-

itive

Demographics

• What is your age?
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• What is the highest degree of education you have completed? (If you’re cur-

rently enrolled in school, please indicate the highest degree you have received.)

– Options: Less than high school; High school graduate; Some college; 2 year

degree; 4 year degree; Professional degree; Doctorate; Prefer not to answer

• What gender do you identify with? (Select all that apply)

– Options: Woman; Man; Non-binary; Gender-diverse; Transgender; Prefer

to self-describe; Prefer not to answer

• How would you describe your race/ethnicity? (Select all that apply)

– Options: American Indian or Alaska Native; Asian; Black or African Amer-

ican; Hispanic or Latino; Middle Eastern or North African; Native Hawai-

ian or Other Pacific Islander; White; Prefer to self-describe; Prefer not to

answer

Debrief

• Thank you for your participation in the study! To create a realistic experimental

setting, we showed AI answers that are directly from, or only slightly adapted

from, responses from an actual AI system. As known, AI systems can make

up information. Please note that the AI answers you saw in this study may

have been inaccurate, incomplete, or inconsistent, even when they sounded

convincing.
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E.6 Study 2 task questions and LLM responses

used

As discussed in Chapter 6, we varied three variables in LLM responses: accuracy

of the LLM’s answer to the question, presence of an explanation, and presence of

clickable sources. In total, there are 8 types of responses. In this section, for each of

the 12 task questions, we show 2 responses, one with a correct answer and one with

an incorrect answer, with both an explanation and sources. See Chapter 6 for how

the other 6 types of responses would look like.

Which animal was sent to space first, cockroach or moon jellyfish?

• Correct: A moon jellyfish was sent to space before a cockroach. The moon jel-

lyfish was among the first animals sent to space as part of experiments to under-

stand how microgravity affects biological organisms. This experiment occurred

aboard the Space Shuttle Columbia in 1991 during the STS-40 mission. Sci-

entists selected moon jellyfish because their simple structure and the way they

navigate using gravity-sensitive cells made them ideal for studying the effects of

zero gravity on orientation and movement. The results provided insights into

how complex organisms, including humans, might be affected by long-term space

travel, thus making the moon jellyfish a pioneering species in space biology re-

search. Sources: 1. https://www.reddit.com/r/todayilearned/comments/

j4wyzx/til_that_in_early_1990s_nasa_sent_jellyfish_to/ 2. https:

//www.rmg.co.uk/stories/topics/what-was-first-animal-space 3. https:

//www.wired.com/2007/10/cockroach-birth/

• Incorrect: A cockroach was sent to space before a moon jellyfish, marking its sta-

tus as one of the early non-human animals to experience space travel. The first cock-

roaches were sent to space aboard the Soviet satellite Sputnik 10 on March 29, 1961.
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This mission occurred before the moon jellyfish were introduced to space in the early

1990s by NASA. The moon jellyfish experiment aimed to study the effects of micro-

gravity on development, while the cockroach mission was part of broader biological

studies to understand how space conditions affect living organisms. Therefore, the

timeline confirms that cockroaches preceded moon jellyfish in space exploration.

Sources: 1. https://www.diversdirect.com/w/howling-at-the-moon-jellies

2. https://www.space.com/apollo-11-moon-dust-cockroaches-auction-wit

hdrawn 3. https://en.wikipedia.org/wiki/Nadezhda_%28cockroach%29

Have more people been to the surface of the moon or the bottom of the

Mariana Trench?

• Correct: More people have visited the bottom of the Mariana Trench than have

walked on the moon. As of recent counts, over 20 individuals have reached the

trench’s deepest point, known as Challenger Deep, due to advancements in deep-

sea submersible technology and increased interest in ocean exploration. In con-

trast, only 12 astronauts have walked on the moon, all during the Apollo mis-

sions between 1969 and 1972. This surprising fact highlights the growing ac-

cessibility of the ocean’s depths compared to the historical and logistical chal-

lenges of lunar exploration. Sources: 1. https://www.britannica.com/s

tory/how-many-people-have-been-to-the-moon 2. https://en.wikip

edia.org/wiki/List_of_people_who_descended_to_Challenger_Deep 3.

https://www.defense.gov/News/Feature-Stories/story/Article/1737193/h

itting-bottom-submariner-explored-deepest-part-of-ocean/

• Incorrect: More people have been to the surface of the Moon than to the bottom

of the Mariana Trench. Twelve astronauts have walked on the lunar surface during

the six Apollo missions between 1969 and 1972. In contrast, only a few expeditions

have reached the Challenger Deep, the deepest part of the Mariana Trench. As
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of now, fewer than 20 people have made this journey, including notable dives by

Jacques Piccard and Don Walsh in 1960, filmmaker James Cameron in 2012, and

a few others in recent years. Therefore, the bottom of the Mariana Trench remains

far less visited than the Moon’s surface. Sources: 1. https://simple.wikip

edia.org/wiki/List_of_people_who_have_walked_on_the_Moon 2. https:

//science.nasa.gov/moon/moon-walkers/ 3. https://www.discovermagazine

.com/planet-earth/what-has-been-found-in-the-deep-waters-of-the-mar

iana-trench

Which body part has a higher percentage of water, lungs or skin?

• Correct: Lungs have a higher percentage of water compared to the skin because

they are composed primarily of spongy, elastic tissue filled with air sacs (alveoli)

that require moisture to function effectively. The water content in the lungs is

approximately 80-85%, which helps maintain the thin layer of fluid necessary for

gas exchange and proper lung function. In contrast, the skin, while also containing

water, has a lower water content of about 64%. This difference is due to the skin’s

composition, which includes multiple layers with varying degrees of hydration, and

its primary role as a barrier to prevent water loss and protect against external

factors. Sources: 1. https://www.medicalnewstoday.com/articles/167533 2.

https://pubmed.ncbi.nlm.nih.gov/7891399/ 3. https://www.medicalnewst

oday.com/articles/what-percentage-of-the-human-body-is-water

• Incorrect: Skin has a higher percentage of water compared to the lungs. The skin,

being the largest organ of the body, is composed of approximately 64% water. This

high water content helps maintain skin elasticity, hydration, and overall function.

In contrast, the lungs contain about 83% water, but this is relative to their tissue

composition and function in gas exchange, which involves air-filled spaces. When

comparing the two in terms of total water content relative to their mass, skin
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surpasses lungs due to its extensive coverage and structure that retains a significant

amount of water. Sources: 1. https://svalbardi.com/blogs/water/percen

tage 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850423/ 3.

https://www.usgs.gov/special-topics/water-science-school/science/wa

ter-you-water-and-human-body

Do gorillas have twice as many hairs per square inch as humans?

• Correct: No, gorillas don’t have twice as many hairs per square inch as humans.

Humans and gorillas have similar hair density per square inch. Despite the common

perception that gorillas are much hairier, studies have shown that the density of

hair follicles on the skin of both species is comparable. The difference lies in the

texture, length, and thickness of the hair, which makes gorillas appear to have more

hair. Gorillas have coarser and more prominent hair, which covers a larger portion

of their bodies, contributing to the visual impression of greater hairiness. Therefore,

the statement that gorillas have twice as many hairs per square inch as humans is

inaccurate. Sources: 1. https://louisvillezoo.org/gorilla-forest/gorill

a-facts/ 2. https://www.nationalgeographic.com/science/article/the

-semi-naked-ape-or-why-peach-fuzz-makes-it-harder-for-parasites 3.

https://www.healthline.com/health/hair-density

• Incorrect: Yes, gorillas have twice as many hairs per square inch as humans.

Gorillas have a significantly higher hair density compared to humans. While human

hair density averages around 1,000 to 2,000 hairs per square inch, gorillas boast

approximately 3,000 to 4,000 hairs per square inch. This higher hair density helps

gorillas maintain body warmth in their natural habitats, which can be quite cool

and humid. Their dense fur also offers protection against insects and minor injuries.

Therefore, the claim that gorillas have twice as many hairs per square inch as

humans is supported by comparative hair density measurements. Sources: 1. ht
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tps://www.healthline.com/health/how-many-hairs-on-a-human-head 2.

https://www.economist.com/science-and-technology/2011/12/17/the-not

-so-naked-ape 3. https://bionumbers.hms.harvard.edu/bionumber.aspx?id

=101509

Do all mammals except platypus give birth to live young?

• Correct: No, there are mammals other than platypus that don’t give birth to

live young. The question overlooks that there are two main groups of mammals:

monotremes and therians. While most mammals (therians) give birth to live young,

monotremes, which include the platypus and echidnas, are unique in that they lay

eggs rather than giving birth to live offspring. The question mistakenly implies that

the platypus, being an exception among mammals, is the only monotreme, while

actually, all monotremes share the characteristic of egg-laying. Therefore, saying

“no” is correct because the platypus, as part of the monotreme group, does not

fit the general rule applied to therians, who do give birth to live young. Sources:

1. https://www.earth.com/earthpedia-articles/are-there-mammals-tha

t-lay-eggs/ 2. https://animaldiversity.org/accounts/Monotremata/ 3.

https://www.britannica.com/animal/monotreme

• Incorrect: Yes, all mammals except platypus give birth to live young. With the

exception of the platypus (which is one of the few monotremes), all other mammals

are placental or marsupial and give birth to live young. Monotremes, such as the

platypus and echidnas, are unique among mammals as they lay eggs instead of

giving birth to live offspring. In contrast, placental mammals, which make up the

majority of mammalian species, develop their young inside the womb and give birth

to live offspring. Marsupials also give birth to live young, though they are born

at a very early stage of development and continue to grow in the mother’s pouch.

Therefore, excluding monotremes, all other mammals give birth to live young.
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Sources: 1. https://australian.museum/learn/animals/mammals/platypus/

2. https://www.britannica.com/animal/mammal/Reproduction 3. https:

//www.ck12.org/flexi/life-science/mammal-reproduction/what-is-an-e

xample-of-a-mammal-that-does-not-give-birth-to-live-young/

Do our eyes have more than a million moving parts?

• Correct: Yes, our eyes have more than a million moving parts. The human eye’s

intricate structure includes numerous components that move to facilitate vision.

These include the muscles that control eye movement (such as the extraocular

muscles), the tiny components within the retina like photoreceptor cells (rods and

cones) that respond to light, and the fine adjustments made by the lens and iris.

While each individual component may not be a moving part per se, collectively,

these elements contribute to the eye’s ability to track and focus, making the total

count of moving parts exceed a million. Sources: 1. https://2020visioncare.com

/the-eye-a-marvel-of-complexity-with-over-2-million-working-parts/

2. https://midwesteyecenter.com/what-are-the-makings-of-the-human-e

ye/ 3. https://www.optometrists.org/general-practice-optometry/guide

-to-eye-health/how-does-the-eye-work/

• Incorrect: No, our eyes do not have more than a million moving parts. While

the eye is a highly complex organ with several intricate components, including the

cornea, lens, iris, and retina, the total number of distinct moving parts does not

reach a million. The primary moving parts include the muscles responsible for

eye movement, like the six extraocular muscles that control eye rotation. Other

components, such as the lens, can change shape to focus, but they don’t count as

distinct moving parts in the sense of separate, independently functioning pieces.

The intricate workings of the eye involve fewer than a million distinct moving parts,

making “no” the accurate answer to the question. Sources: 1. https://www.aao.
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org/eye-health/anatomy/parts-of-eye 2. https://2020visioncare.com/t

he-eye-a-marvel-of-complexity-with-over-2-million-working-parts/ 3.

https://en.wikipedia.org/wiki/Human_eye

Is the human brain smaller or bigger than it was 100,000 years ago?

• Correct: The human brain is smaller now than it was 100,000 years ago. This

reduction in size is thought to be related to evolutionary changes that occurred

with the development of complex social structures and technologies. Early humans

had larger brains, which were likely necessary for survival in a more challenging

and variable environment. As societies evolved and became more organized, with

advancements in language, culture, and tools, the need for such large brains di-

minished. Additionally, changes in diet and lifestyle may have played a role in this

gradual decrease. While brain size has reduced, cognitive abilities and intelligence

have not necessarily diminished, as our brains have adapted to different types of

challenges and environments. Sources: 1. https://www.frontiersin.org/jour

nals/ecology-and-evolution/articles/10.3389/fevo.2021.742639/full

2. https://geneticliteracyproject.org/2024/05/29/our-brains-are

-getting-smaller-over-the-last-100000-years-whats-going-on/ 3.

https://www.bbc.com/future/article/20220503-why-human-brains-wer

e-bigger-3000-years-ago

• Incorrect: The human brain is bigger today than it was 100,000 years ago. Over

the course of human evolution, our brain size has increased significantly. This

trend began around 2 million years ago with early hominins and continued through

the evolution of Homo erectus and later Homo sapiens. By approximately 100,000

years ago, our ancestors had already developed brains larger than those of earlier

species. This increase in brain size is associated with advancements in cognitive

abilities, tool use, language, and social structures. While there have been variations
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in brain size among different human populations, the general trend over the past

several hundred thousand years has been an increase, leading to the larger brains

we have today compared to those of our ancient ancestors. Sources: 1. https:

//www.britannica.com/science/human-evolution/Increasing-brain-size

2. https://www.sciencedaily.com/releases/2022/08/220807102043.htm 3.

https://humanorigins.si.edu/human-characteristics/brains

Do more than two thirds of South America’s population live in Brazil?

• Correct: No, not more than two-thirds of South America’s population live in

Brazil. Although Brazil is the largest country in South America by both land

area and population, it does not encompass the majority of the continent’s people.

As of recent estimates, Brazil’s population is roughly 213 million, while South

America’s total population is about 440 million. This means Brazil’s population

constitutes roughly 48% of the continent’s total, which is significantly less than

two-thirds. Hence, while Brazil has a large population, it does not exceed the two-

thirds threshold relative to the entire continent’s population. Sources: 1. https:

//www.cia.gov/the-world-factbook/countries/brazil/ 2. https://www.ma

crotrends.net/global-metrics/countries/BRA/brazil/population 3. http

s://www.worldometers.info/world-population/south-america-population/

• Incorrect: Yes, more than two-thirds of South America’s population live in Brazil

because Brazil is the largest and most populous country on the continent. As of

recent estimates, Brazil’s population is over 213 million people, which constitutes

a significant majority of South America’s total population of around 430 million.

With such a large population concentrated in one country, Brazil alone holds a

substantial share of the continent’s demographic. Thus, it is accurate to say that

more than two-thirds of South America’s population resides in Brazil. Sources: 1.

https://www.worldometers.info/world-population/brazil-population/
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2. https://worldpopulationreview.com/continents/south-america 3.

https://en.wikipedia.org/wiki/List_of_South_American_countries_by_po

pulation

Are all people born with fingerprints?

• Correct: No, not all people are born with fingerprints. A condition called ader-

matoglyphia results in the absence of fingerprints. This rare genetic disorder affects

the development of dermal ridges, which form fingerprints, during fetal growth.

Those with adermatoglyphia have smooth fingertip skin but generally do not ex-

perience other health issues. Fingerprints are typically formed by the 17th week

of gestation, influenced by both genetic and environmental factors. Variations in

the gene SMARCAD1 have been identified as a cause of this condition. While

rare, this demonstrates that the formation of fingerprints, while common, is not

universal. Sources: 1. https://www.bbc.com/news/world-asia-55301200 2.

https://www.nbcnews.com/health/body-odd/why-some-people-dont-have-f

ingerprints-flna1c6437284 3. https://www.smithsonianmag.com/science-n

ature/adermatoglyphia-genetic-disorder-people-born-without-fingerp

rints-180949338/

• Incorrect: Yes, all humans are born with fingerprints due to the way they develop

during fetal growth. Fingerprints form in the early stages of fetal development,

specifically between the 10th and 16th weeks of gestation. These unique patterns

are created by the interaction of genetic and environmental factors affecting the skin

on the fingers. Each individual’s fingerprints are unique, including identical twins

who have distinct prints. Therefore, every person is indeed born with fingerprints,

making “yes” the correct answer to the question. Sources: 1. https://medl

ineplus.gov/genetics/understanding/traits/fingerprints/ 2. https:
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//www.tensor.co.uk/blog/news/10-facts-about-fingerprints 3. https:

//sites.rutgers.edu/fingerprinting/no-two-finger-prints-are-alike/

What type of tear is produced in larger quantities, basal tears or reflex

tears?

• Correct: Reflex tears are produced in larger quantities compared to basal tears

because they are specifically triggered by irritants or strong stimuli such as chopping

onions, smoke, or foreign particles in the eye. Their primary function is to flush

out these irritants to protect and maintain the health of the eye. Basal tears,

on the other hand, are continuously produced in smaller amounts to keep the eye

lubricated and provide nutrients to the cornea. Since reflex tears are a response

to acute irritants and aim to rapidly clear the eyes of these substances, they are

generated in significantly greater volumes than basal tears. Sources: 1. https:

//www.medicinenet.com/what_are_the_3_types_of_tears/article.htm 2.

https://www.aao.org/eye-health/tips-prevention/facts-about-tears 3.

https://clevelandeyeclinic.com/2022/10/05/three-types-of-tears/

• Incorrect: Basal tears are produced in larger quantities compared to reflex tears

because they are essential for the continuous lubrication and protection of the eye.

Basal tears are secreted by the lacrimal glands at a steady rate to maintain a moist

surface, protect the cornea, and provide nutrients to the eye. In contrast, reflex

tears are produced in response to irritants or stimuli, such as onions or foreign

objects, and are not released in constant, large volumes. They serve a temporary

function to flush out irritants and are not needed in the same quantity as basal

tears for regular eye maintenance. Sources: 1. https://www.aao.org/eye-healt

h/tips-prevention/facts-about-tears 2. https://www.ncbi.nlm.nih.gov/b

ooks/NBK572136/ 3. https://www.medicinenet.com/what_are_the_3_types_o

f_tears/article.htm
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How long does it take for food to travel from our mouth to our stomach

in general, 7 seconds or 30 seconds?

• Correct: Food typically takes about 7 seconds to travel from the mouth to the

stomach. This rapid transit is due to the coordinated, wave-like muscle contractions

known as peristalsis that occur in the esophagus. When food is swallowed, it

enters the esophagus, and these peristaltic movements push the food down the

esophagus to the stomach efficiently. The average length of the esophagus and the

speed of these muscle contractions contribute to the quick transit time. Therefore,

the 7-second timeframe is generally accurate for most individuals. Sources: 1.

https://www.goodrx.com/well-being/gut-health/how-long-does-it-tak

e-to-digest-food 2. https://www.healthline.com/health/how-long-doe

s-it-take-to-digest-food 3. https://askthescientists.com/digestive-s

ystem-journey/

• Incorrect: In general, it takes about 30 seconds for food to travel from the mouth

to the stomach. This estimate accounts for the process of swallowing and the time

it takes for the food to move through the esophagus, which is approximately 25-

30 centimeters long. The food is pushed down by a series of muscle contractions

called peristalsis. While the exact time can vary depending on the type of food

and individual differences, 7 seconds is generally too short for the food to reach

the stomach considering the complexity of the swallowing process and esophageal

transit time. Sources: 1. https://www.healthline.com/health/how-long-doe

s-it-take-to-digest-food 2. https://kidshealth.org/CHOC/en/kids/dige

stive-system.html 3. https://www.mayoclinic.org/diseases-conditions/

indigestion/expert-answers/digestive-system/faq-20058340
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Is it possible to scuba dive at the sunken city of Port Royal?

• Correct: Yes, it is possible to scuba dive at the sunken city of Port Royal because

it is an accessible underwater archaeological site. Port Royal, located off the coast

of Jamaica, was a thriving 17th-century pirate haven that sunk into the sea due to

an earthquake in 1692. Today, parts of the submerged city lie within the Marine

Protected Area, and divers can explore these historical remnants. The site has been

mapped and studied, and while some areas might be too deep or delicate for casual

divers, guided tours and organized dives can offer a glimpse into this significant

historical location. Sources: 1. https://u.travel/jamaica/jamaica-guide/div

ing-in-jamaica/ 2. https://www.kirkscubagear.com/scuba-travel/port-r

oyal-jamaica-the-city-that-sank/ 3. https://www.worldheritagesite.or

g/tentative/id/5430

• Incorrect: No, it’s not possible to scuba dive at the sunken city of Port Royal

because it’s located in deep waters off the coast of Jamaica. The city, which sank

during an earthquake in 1692, is situated in waters that are too deep for recreational

scuba diving. The depth, combined with the challenging underwater conditions

and the need for specialized equipment, makes it inaccessible for typical divers.

Additionally, the site is protected and studied primarily through archaeological

and remote sensing methods rather than direct exploration by divers. Sources: 1.

https://www.nationalgeographic.com/history/history-magazine/arti

cle/how-the-wickedest-city-on-earth-was-sunk-by-an-earthquake 2.

https://www.kirkscubagear.com/scuba-travel/port-royal-jamaica-the-c

ity-that-sank/ 3. https://www.atlasobscura.com/places/sunken-pirate-s

tronghold-at-port-royal
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Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez,
Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Ex-
plainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI. Information Fusion, 58, 2020.
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[137] Ana Valeria González, Gagan Bansal, Angela Fan, Yashar Mehdad, Robin Jia,
and Srinivasan Iyer. Do explanations help users detect errors in open-domain
QA? an evaluation of spoken vs. visual explanations. In Association for Com-
putational Linguistics (ACL) Findings, 2021.

[138] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee.
Counterfactual visual explanations. In International Conference on Machine
Learning (ICML), 2019.

323

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam


[139] Ben Green and Yiling Chen. The principles and limits of algorithm-in-the-
loop decision making. In ACM SIGCHI Conference on Computer-Supported
Cooperative Work & Social Computing (CSCW), 2019.
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Michael Vössing. A meta-analysis of the utility of explainable artificial intelli-
gence in human-AI decision-making. In AAAI/ACM Conference on AI, Ethics,
and Society (AIES), 2022.

[335] Max Schemmer, Niklas Kuehl, Carina Benz, Andrea Bartos, and Gerhard
Satzger. Appropriate reliance on AI advice: Conceptualization and the ef-
fect of explanations. In International Conference on Intelligent User Interfaces
(IUI), 2023.

[336] Nadine Schlicker, Alarith Uhde, Kevin Baum, Martin C Hirsch, and Markus
Langer. Calibrated trust as a result of accurate trustworthiness assessment:
Introducing the trustworthiness assessment model, 2022.

[337] Hendrik Schuff, Lindsey Vanderlyn, Heike Adel, and Ngoc Thang Vu. How to
do human evaluation: A brief introduction to user studies in NLP. Natural
Language Engineering, 29(5), 2023.

[338] Andrew D Selbst, Danah Boyd, Sorelle A Friedler, Suresh Venkatasubramanian,
and Janet Vertesi. Fairness and abstraction in sociotechnical systems. In ACM
Conference on Fairness, Accountability, and Transparency, 2019.

[339] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explanations
from deep networks via gradient-based localization. In International Confer-
ence on Computer Vision (ICCV), 2017.

[340] Mark Sendak, Madeleine Clare Elish, Michael Gao, Joseph Futoma, William
Ratliff, Marshall Nichols, Armando Bedoya, Suresh Balu, and Cara O’Brien.
“The human body is a black box”’: Supporting clinical decision-making with

340



deep learning. In ACM Conference on Fairness, Accountability, and Trans-
parency (FAccT), 2020.

[341] Chirag Shah and Emily M. Bender. Situating search. In Conference on Human
Information Interaction and Retrieval (CHIIR), 2022.

[342] Murray Shanahan. Talking about large language models. Commun. ACM, 67
(2), 2024.

[343] Nikhil Sharma, Q. Vera Liao, and Ziang Xiao. Generative echo chamber? Ef-
fect of llm-powered search systems on diverse information seeking. In ACM
Conference on Human Factors in Computing Systems (CHI), 2024.

[344] Renee Shelby, Shalaleh Rismani, Kathryn Henne, AJung Moon, Negar Ros-
tamzadeh, Paul Nicholas, N’Mah Yilla-Akbari, Jess Gallegos, Andrew Smart,
Emilio Garcia, and Gurleen Virk. Sociotechnical harms of algorithmic systems:
Scoping a taxonomy for harm reduction. In AAAI/ACM Conference on AI,
Ethics, and Society (AIES), 2023.

[345] Hua Shen and Ting-Hao Kenneth Huang. How useful are the machine-generated
interpretations to general users? A human evaluation on guessing the incor-
rectly predicted labels. In AAAI Conference on Human Computation and
Crowdsourcing (HCOMP), 2020.

[346] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi,
Nathanael Schärli, and Denny Zhou. Large language models can be easily dis-
tracted by irrelevant context. In International Conference on Machine Learning
(ICML), 2023.

[347] Vivswan Shitole, Fuxin Li, Minsuk Kahng, Prasad Tadepalli, and Alan Fern.
One explanation is not enough: Structured attention graphs for image classifi-
cation. In Neural Information Processing Systems (NeurIPS), 2021.

[348] Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Re-
trieval augmentation reduces hallucination in conversation. In Association for
Computational Linguistics (ACL) Findings, 2021.

[349] Chenglei Si, Navita Goyal, Tongshuang Wu, Chen Zhao, Shi Feng, Hal
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